Mathematics
高中

囲ったやつの3と2ってどっから来たんですか?

基礎問 精講 170 第6章 微分法と積分法 109 面積(V) 放物線y=-x+3 ①, y=x2-5x+11 ..... ② につい て,次の問いに答えよ。 (1) ①②の交点の座標を求めよ. (2)mm,nは実数とする. 直線 y=mx+n...... ③ が ①,②の両 方に接するとき,m,nの値を求めよ. (3)①,②,③で囲まれた部分の面積Sを求めよ. (2)90 によると,共通接線には2つの形があります。 (3) 図をかいてみるとわかりますが, 面積を2つに分けて求める必 要があります。 それは,上側から下側をひくとき (106) 上側の 式が2種類あるからです. y-(2-t+3)=(2t-1)(x-t) y=(21-1)x-t²+3 これは、②にも接しているので、 x²-5x+11=(2t-1)x-12+3 より2(+2)x+t2+8= 0 の判別式をDとすると, 20 4t-4=0 D =0 4 ∴. t=1 (t+2)-(t2+8) = 0 よって、 ①,② の両方に接する直線は,y=x+2 m=1, n=2 (3)Sは右図の色の部分. . S={(2x+3)(x+2)}dx面積を 解答 (1)①②より,yを消去して x²-x+3=r2-5x+11 ∴. 4x=8 :.x=2 このとき,y=5 よって, ① ② の交点は (2,5) (2)(i) ① ③ が接するとき 判別式をDとすると D=0 x+3=mx+nより2-(m+1)x+3-n=0 :.m²+2m+4n-11=0 ...... ④ (i) ② ③が接するとき (m+1)2-4(3-n) =0 2-5x+11=mx+nより-m+5)x+11-n=0 判別式を D2 とすると, D2=0 (m+5)2-4(11-n) = 0 :.m²+10m+4n-19=0 ④ ⑤ より ..... ⑤ 171 140 分ける 15 ③ +∫{(x-5.x+11)(x+2)}dr ① 13 12 J1 (x-1)²dx+√(x-3)²dr (*) 0123 IC 1 2 3 3 =113 (1-1)+113 (1-3) 11-13 注 (*)で定積分する関数が完全平方式になるのは当然です. 106の を見てください. 「上にある式一下にある式」という計算は、2つの式を連立させて」を 消去する作業と同じことをしているので,交点のx座標がかくれてい ることになります。 ①と③の交点が,r=1 (重解) だから, 「上にある式一下にある式」=(x-1)^ となるのは当然です . ポイント 上にある式や下にある式が積分の範囲の途中で変わる ときは,面積はそこで分けて考える

解答

これがヒントです。貴方が前項の下端が1 上端が2の積分をする意味が分かっているならこれで分かると思います

留言
您的問題解決了嗎?