Mathematics
高中
已解決

(3)でどうして赤字のように言えるのか分かりません。
解説お願いします🙏

関数 f(x) = 4' + α・2 +2 +11a+3 について (1) t = 2" とおくとき, tの値のとり得る範囲は t> ア である。 また,y=f(x)として,yをもの式で表すと,y=e+イ at+ウエα+オとなる。 「カキ (2)yの最小値が-17 となるとき, α の値は a = である。 (3)xの方程式f(x)=0が異なる2つの負の解をもつとき、定数αの値の範囲を求めると, 解答 Key 1 (1) すべての実数xに対して2>0であるから また t>0 y=(2x)+α・22.2x + 11a + 3 = L + 4at + 11a + 3 (2)g(t)=t+ 4at + 11a +3 とおく。 g(t) = (t+2a)-4² +11a +3 であるから 「ケコ <a< スセ サシ x=(22)x = 22x = =(2x)2 ( t = 0 を範囲に含まないた y (i) -2a≦0 すなわち a≧0 のとき y=g(t) のグラフは右の図のようになり,g (t) は最小値をもたない。 最小値をもたない。 f= 11a+3 ゆえに、最小値が-17となることはない。 -2a argol O (ii) 2a>0 すなわち α < 0 のとき t y = g(t) のグラフは右の図のようになり,g(t)は t = -2α のとき最小値 4α+11a +3をとる。 43 最小値が-17 のとき -4α² + 11a+3= -17 Corgols 2a01 (4a+5)(a-4) = 0 となり 10 t Egols Solt sof (R) 4a²-11a-20 = 0 5 a < 0 より a=― 4 (2.8)orzol (3) x < 0 のとき t = 2x < 2°=1 y 1 04a²+11a+3 xの方程式 f(x) =0が異なる2つの負の解をもつとき, tの2次方 程式 g(t) = 0 は区間 0<t< 1 に異なる2つの実数解をもつ。 この とき,y=g(t)のグラフは次の図のような放物線になる。 よって (i) 放物線y=g(t) の頂点のy座標が負で あるから -4a²+11a+3<0 (ii) 放物線y=g(t) の軸はt= -2α より 0<-2a <1 43 asola sa (0100.01)0 60102.0 D (S) 方程式 g(t) = 0 の判別 D>0 としてもよい。 g(1) ae. (iii) g(0)=11a+3>0 g(0) -2a O (iv) g(1) = 15a +4 > 0 1 t (i)より (a-3)(4a+1) > 0 ゆえに a 1 , 3<alog 1 (ii)より <a<0 (iv) SP-D 2 (ii) 3 (Ⅲ) より a>- 11 フより、 002(i) 1 3 4 0 2 3 a -0.2727··· 11 (iv)より>-- 3 15 11 15 4 (i)~ (iv) より, 求めるαの値の範囲は のカギ! 4 - 15 <a<-1/4 15 -0.2666...

解答

✨ 最佳解答 ✨

「xは2つの異なる負の解をもつ」
⇒「x<0の範囲で2つの異なる解をもつ」
t=2ˣであるから、
x<0で2つの解をもつ ⇒ t<2⁰=1 で2つの解をもつ 
0<tだから、0<t<1で2つの解をもつ

ありがとうございます!!

留言
您的問題解決了嗎?