Mathematics
高中

演習β第36回 1(3)
(3)が全く分からないので詳しく教えてください🙇‍♀️

1 [2000 香川大] 3次関数f(x)=x-3ax+α²-4について,次の問いに答えよ。 (1) この関数の極値を調べよ. (2) 方程式f(x)=0が異なる3つの実数解をもつようなαの値の範囲を求めよ. (3) (2) のとき, 3つの解は2と2aの間にあることを示せ . 解答の値によって場合分け!! (1) f'(x)=3x-34²=3(x+a)(x-a) [1] a>0のとき x=-αで極大値f(-α)=203+α-a, x=αで極小値f(α)=-2a+α-a をとる。 [2] α=0のとき極値なし. [3] a <0のとき で極大値f(a) =-2a3+a²-a, x=-αで極小値f(-a)=2a+α-a をとる. (2) 関数f(x) が正の極大値と負の極小値をもつとき, y=f(x)のグラフはx軸と3点 で交わるから、方程式f(x) = 0 は異なる3つの実数解をもつ。 (1) から, 求める条件は A a≠0かつf(-a)f(a)<0 ここで (1)と〔3]を合わせた f(-a) f(a)=(2a³ + a²-a)(-2a³+ a²-a) =a²(2a-1)(a+1)(-2a²+a-1) [2] 0²0n²z fux)= 3x² fux tot +4x) = 0 1²2²3011 X=0 the 209 a0から a² > 0 2 7 また - 2a² + a−1 = -2(a− 1)² -- 8 よって, f(-a)f(α) <0から (2a-1)(a+1)>0 これを解いて a<-1, 1/23 <a (a≠0を満たす) (3) f(-2a)=-2a³ + a²-a=f(a), ƒ(2a)=2a³+ a²-a=f(-a) (2) より, f(-a) f(a)<0であるから f(-2a)f(−a)=f(a)f(-a) <0, Hoyv <0 f(a)f(2a)=f(a)f(-a) <0 ゆえに, f(x) = 0 は24とa,-aとa, a と24の間にそれぞれ解をもつ. よって、3つの解は2と2の間にある. 2 [2 かを定 なる担 (1) 2 (2) 2 (3) 2 (4) (1) t (2
微分積分

解答

尚無回答

您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉