Mathematics
高中
已解決
この問題の解説の意味が分かりません。特に赤線を引いている部分です。教えてください🙇🏻♀️
n
√
24424の倍数で,正の約数の個数が21個である自然数nを求めよ。
14 24
244
■■■■■指針■
自然数Nを素因数分解した結果が
N=pagere.......であるとき, Nの正の約数の
個数は (a +1)(b+1)(c +1)・・・・・・・
正の約数の個数から, もとの自然数の素因数分
解した形を考える。
(1) f=2.8=(1+11+2)
21 を素因数分解すると
21=3.7
よって,正の約数の個数が21個である自然数n
を素因数分解すると,
26
120, pgp, gは異なる素数)
のどちらかの形で表される。
187
nは24の倍数であり, 243.23 であるから n
はpg の形で表される。
(2) したがって、求める自然数nは
ben=3²-26=576
+5148)
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8933
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6082
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5839
24
pの2乗qの6乗は分かったのですが、pの20乗はどうやって出てきたか分かりません。