Mathematics
高中
数学A
n+2はどうしてこのような範囲だと定めれるのか教えてください。
ある長方形を見つけ, それを用いて√3 が無理数であることを証明せよ。
例題 38 7 +50 と 2n+16 の最大公約数が6になるような50以下の自然数
n をすべて求めよ。
指針 等式 α = bg + r を満たす整数α b.grについて, aとbの最大公約数はbとrの
最大公約数に等しいことを利用する。
[解答] 7n+50=(2n+16) 3+ (n+2)
2n+16=(n+2) ・2+12
よって, 7n +50 と 2n + 16 の最大公約数は, n +2と12の最大公約数に等しい。
したがって, 7n +50と2n+16の最大公約数が6のとき, n +2は6の倍数である
が, 12の倍数でない。
また, 3≦n+2≦52 であるから
n+2=6, 18,30,42
n=4, 16,28, 40 答
よって
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8498
115
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
5843
22
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
5761
51
詳説【数学A】第2章 確率
5700
24
数学ⅠA公式集
5274
17
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5004
17
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4687
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4426
11
詳説【数学A】第3章 平面図形
3513
15
詳説【数学Ⅰ】第三章 図形と計量(後半)~正弦・余弦定理~
3441
10