Mathematics
國中
②の問題です。
比を使って解くのが苦手なので、この問題以外にも対応できるよう、コツや考え方を教えて欲しいです。
〔問2] 右の図2は、図1において,
頂点Bと点Pを結び,
OIÁ 図2図
A
SATORS
頂点Dを通り線分BPに平行な直線を引き
辺ABとの交点をQ, 線分APとの交点を
Rとした場合を表している。
次の①,②に答えよ。
JSB
CORC
SOASTA LASKA JAŠAR
SUT JA
① △ABP APDR であることを証明せよ。 130.00%
四角形 QBSRの面積は,△AQRの面積の
の
けこ
R
倍である。
次の 「の中の「き」 「く」 「け」 「こ」に当てはまる数字をそれぞれ答えよ。
図2において, 頂点Cと点Rを結び, 線分BPと線分CRの交点をSとした場合を
考える。
CP:PD=2:1のとき,
P
D
解答
尚無回答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉