34 SAR IN
33 度数分布と代表値
右の表は, 15人のあるゲームの得点をまと 得点 12345
4
x3 y1
めたものである。次の問いに答えよ。 人数 223ui
(1) 平均値が2.8のとき、xとyの値を求めよ。
DAX
£18-888
?? (2) 中央値が3のとき,このとりうる値を求めよ。S=エ (8)。
X
(3) 最頻値が4のとき、yのとりうる値を求めよ。
(8)
解
(1) データの数は15だから
2+z+3+y+1=15x+y=9① データの総数を押さえる。
FAT
平均値が 2.8 だから1g=v=
13 (1×2+2x+3×3+4y+5×1)=2.8
15
MART JS
桑代
-1
① ② より x=5,y=4
(2) データの数が15で, 中央値が3だから
2+x+3≧8よりx≧3, 1+y+3≧8 より y≧4
26
①よりy=9-x≧4.x≦5
y>
0=
よって, 3≦x≦5 より x = 3,4,5
(3) 最頻値が4だから y≧4 かつy>x である。
①よりx=9-y<y .. 90
よって, y=5,6,7,8,9
アドバイス
16+2x+4y=42. x+2y=130=y+¤ (8)
・②
2
x=(x₁
==x
C
1 (x₁+x₂+...+x₁)
←データ数が15だから
中央値は小さい方から
も大きい方からも8番
目にあるデータである。
合巣秀料条十条舞堂・
a
***** 31
である。
=ではいけないんですか?