Mathematics
มัธยมปลาย
絶対値を含む方程式と不等式で、
方程式の時は場合分け→解が範囲を満たすか確認
不等式の時は場合分け→共通範囲を求める
この考え方で良いのですか?
教えてください<(_ _)>
@D 1
解
次の方程式, 不等式を解け。
(1) 1] *ー4=0 すなわち ァ=4 のとき
|メー4| ニャー4 であるから, 方程式は ァー4=3z
これを解くと ニー2 これは, ァ=4を満たさない。
[2] *ー4<く0 すなわち *く4のとき
|テー4|テー(ァーー4) であるから, 方程式は 一ァ二4=3ヶ
これを解くと ァー1 これは, <4を満たす。
山], [2] から, 求める解は *=1
(2) [1] 計4のとき
不等式は ニャー4ミ3ァ ドドつS半og2
これと ァ=4 との共通秋囲は *4 ……" ①
[2] z<4 のとき
不等式は 一ヶ十4妥3を よって ァ才1
これとァ<く4 との共通範囲は
1ミァ<4 …… @②
求める解は, ① と ② を合わ 1 6
せた範囲で ァ=1
คำตอบ
ยังไม่มีคำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8926
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6079
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6076
51
詳説【数学A】第2章 確率
5839
24