Mathematics
มัธยมปลาย

数B 数列の問題です。練習27を教科書の例題を見ながら途中まで解いてみましたが、ここまで合っているかどうかも、この先の解き方も分かりません。

ここでは、1からnまでの自然数の2乗の和 第2節 いろいろな数列 | 27 Σ k² = 1²+2²+3²+...+n² を求めてみよう。 恒等式(k-1)=3k-3k+1 を利用して考える。 に1からnまでを順に代入すると 5 左辺だけ加えると k=1 13-03-3-12-3-1+1 N-03 k=2 23-13-3-22-3.2+1 k=3 3-2°=3.32-3・3+1 + n-(n-1)3 n3-03 k=nn³-(n-1)³=3.n²-3⋅n+1 これらn個の等式の辺々を加えると n=3(1+2+3+......+n") - 3(1+2+3+... +n) +1×n 第1章 数列 練27 (43451 k4-(k-1)" 2 468-660-46-1 を用いて 次の等を証明せよ。 ん {In (n+1)}" k=1 K=2 K=3 100 k=w 13×23×33× 1"-04 4.13 -6.12 +4.1 - 1 2" - 17 = 4.23-6-22-412-1 34-24 = 4.33-63244×3-1 h" - (n-1) = 4 n³ - 6 ∙n² +4. n -1 10 これろん個の等式の辺々を加えると 14- 4 (13 + 2 ³ - 33 + +-6(1+2+32+TH + 4(1727311 th) n すなれる n4 E 4263 kol 2 6号に+4に 1 kol " 15 h4 = 4 2 ₤ 3 - 6 2 1²-4.2 4.(n+1)-1 (CH すなわち n³=3k²-3k+n k=1 k=1 1 n³-3 k²-3n(n+1)+n k = n(n+1) k=1 よって 6k=2n+3n(n+1)-2n k=1 6k=n(n+1)(2n+1) k=1 したがって Σ k² = 1² +2²+3² + ......+n²= n(n+1)(2n+1) k=1 練習等式 -(k-1)^=4k-6k²+4k-1 を用いて, 次の等式を証明 27 せよ。 {1/(n+1)} =1+2+3+…+= {/12n (n+1) *kにどのような値を代入しても成り立つ等式を,kについての恒等式という。 20
数列

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉