Mathematics
มัธยมปลาย

25から全く意味がわかりません!!解説お願いします🙇🏻‍♂️💦一応付属の解説見ましたが全然わかりませんでした😢

25. 次の式を因数分解せよ. (1) x2+2x+1-4y2 (0) (2)x2-y2+2y-1 27. 次の式を最低次数の文字について整理して因数分解せよ. (1) ax+x2+α-1 29. 次の式を因数分解せよ. (1)x2+ (2y-1)x+ye-y (2) ab+bc-b2-ac (2)x2-(3y+1)x+2y2+3 31. 次の式を1つの文字で整理して因数分解せよ. (1) 2(b-c) +62(c-a)+c2(a-b) (2) 2(b+c) +62(c+α)+c2(a+b)+2abc | 33. 次の式を適当な置き換えをして因数分解せよ. (1)(x2+4x)2+7 (x²+4x) +12 (2) (2x-1)(x²-2x-4)+2 35. 次の式を因数分解せよ. (1) x4-8x2+16 (3) x4 +3x2+4 37. 次の式を因数分解せよ. (1)x3+1 (3)x-9x3+8 (2)x-9x2+8 (4) x4+x2+1 (2)x3-64 動画で解説 (3) (4)
22. (1) (5)=x+3x². (2y)+3+x-(2y)²+(2y)³ (2) (与式) =x+6x2y+12xy²+8³ =(3a) +3. (3a)-2b+3-3a-(2b)²+(2b)³ =27a3+54a2b+36ab2+8b3 (3) (与式) =(2x)³-3. (2x)2y+3+ (2x)·y²-y³ =8x³-12x²y+6xy2-y³ (4) (与式) =(3a)-3-(3a)-4b+3.3a. (4b)²-(46)³ =27a3-108a2b+144ab2-64b³ 23. (1) (5)=(x-2) (x²+x+2+22)=x³-23=x³-8 (2) (5)=(x+3)(x²-x+3+3²) = x²³+3³=x³+27 24. (1) (5)=(2x+y) | (2x)² - (2x)·y+y² = (2x)³+y³= 8x³+y³ (2) (5)=(3a-2b)|(3a)+(3a) (2b)+(2b)² = (3a)-(26)=27a³-863 25. (1) (5) = (x+1)² - (2y)² =(x+1)+2y| | (x+1)-2y| =(x+2y+1) (x-2y+1) (2)与式)=(2-2y+1) =x2(y-12 =(x+(y-1)x-(y-1)} (x+y-1)(x-y+1) 26. (1) (5)=(x²-2xy+y²)-4z² =(x-y)2-(2z)2 ={(x-y)+2z}{(x-y)-2z} =(x-y+2z)(x-y-2z) (2) (与式) (4y2-12yz+9z2) = x²-(2y-3z)² e=x+(2y-32)} (x-(2y-3z)} =(x+2y-32)(x-2y+32) 27. (1) (5)=(x+1)a+(x+1)(x-1) =(x+1) (a+ (x-1)} =(x+1)(a+x-1) =(x+1)(x+a-1) (2) (5)=(6-c)a-b(b-c) =(a-b)(b-c) 28. (1) (5)=(a²-1)x+(a-1) =(a-1)(a+1)x+(a−1)( =(a-1){(a+1)x+1} =(a-1)(ax+x+1)> (1) (2) (5)=(a-b²)c+ab (a-b)= =(a-b)(a+b)c+ab(a-b)) =(a-b)(a+b)c+abs() =(a-b) (ab+be+ca) 29. (1) (5)=x+(2y-1)x+y(y-1) =(x+y) (x+(y-1)] =(x+y)(x+y-1) (2) (5)=x²- (3y+1)x+(y+2)(2y-1) ={x-(y+2)|{x-(2y-1)} =(x-y-2)(x-2y+1) 30. (1) (5)=2x²+(y-1)x-(y²-5y+6) (参考) X =2x²+(y-1)x-(y-2)(y-3) =x+(y-2) (2x-(y-3)} =(x+y-2) (2x-y+3) (y-2)-2y-4 2(y-3)-y+3 y-1 (2) (t) = 2x²+(5y-1)x+2(y²+2y-3) =2x²+(5y-1)x+2(y+3)(y-1) (参考) (x+2(y-1) (2x+(y+3)} = (x+2y-2) (2x+y+3) 2 (y-1)+4y-4 (y+3) y+3 5y-1 31. (1) (5)=(b-c) a²+b²c-b2a+ca²-bc² (2+ =(b-c) a²- (62-c²) a+bc (b-c) =(b-c) a²-(b-c)(b+c) a+bc (b-c) =(b-c) {a²- (b+c) a+bc\ =(b-c)(a-b)(a–c) =-(a-b)(b-c)(c-a) (2) (5)=(b+c) a²+b²c+b²a+c²a+bc²+2abc =(b+c) a²+(b2+2bc+c²) a+bc (b+c) =(b+c) a²+ (b+c)2a+bc (b+c) =(b+c) {a²+(b+c) a+bc} =(b+c)(a+b)(a+c) =(a+b)(b+c)(c+a) 32. (1) (5)=bc (b-c)-c2a-ca²+ab+ab² =(b-c) a²+(62-c²) a+bc (b-c) =(b-c) a²+(b+c) (b-c) a+bc (b-c) (+= (b-c) {a²+(b+c) a+bc\ a)=(b-c)(a+b) (a+c) =(a+b)(b-c)(c+a) (2) (4) a² (b-c)+b2c+ab²+c²a-bc²-abc =(b-c) a²+ (b2-bc+c²) a+bc (b-c) =(a+(b-c)} {(b-c) a+bc) =(a+b-c)(ab+bc-ca) X (bc) - b²-2bc+c² (8) (参考) (4-1 (b-c) bc → bc b²-bc+c² ート

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?