Mathematics
มัธยมปลาย
เคลียร์แล้ว

イコールはなぜついてもよいのですか?
角B<90°、角C<90°からa≠c,a≠-cになる理由も知りたいです

基本 例題 87 座標を利用した証明 (2) △ABC の各辺の垂直二等分線は1点で交わることを証明せよ。 指針 p.123 基本例題 74と同じように、計算がらくになる工夫をする。 座標の工夫 ① 座標に0を多く含む [2] 対称に点をとる 基本 74 この例題では,各辺の垂直二等分線の方程式を利用するから、各辺の中点の座標に分 数が現れないように, A (2a,26),B(-2c, 0), C(2c, 0) と設定する。 なお、本間は三角形の外心の存在の座標を利用した証明にあたる。 点と直線の 解答 ∠Aを最大角としても一般性を失 わない。 このとき,∠B <90° ∠C <90° である。 y A(2a, 2b) 開菜 注意 間違った座標設定 例えば, A(0, b),B(c, 0), C(-c, 0) では,△ABC ただし 直線BC をx軸に,辺BCの垂直 二等分線をy軸にとり,△ABC の頂点の座標を次のようにおく。 (A(2a, 2b), B(-2c, 0), C(2c, 0) a≥0, b>0, c>0 NX は二等辺三角形で, 特別な M K C -2c OL 2cx 三角形しか表さない 座標を設定するときは, 一般性を失わないように しなければならない。 傾きは であるから,mo- =-1より <90°, ∠C <90° から, a≠c, aキーcである。 更に,辺BC, CA, ABの中点をそれぞれL, M, N とす 2 ると,L(0,0), M(a+c, b), N(a-c, b) と表される。 辺ABの垂直二等分線の傾きを とすると, 直線 AB の b atc b 証明に直線の方程式を使 用するから,(分母)=0 とならないように,この 条件を記している。 &(S) 0-2b -2c-2a b atc です a+c 点を m=- 交 28- よって,辺AB の垂直二等分線の方程式は 平行 の y-b=-- atc(x-a+c) 点N (a-c, b)を通り, 傾き - a+c の直線。 b すなわち atc a2+b2-c2 y=- -x+- b ①の交点である 辺 ACの垂直二等分線の方程式は,①でcの代わりに b -c とおいて a²+b²-c² a-c x+ b y=-b 2直線①②の交点をKとすると, ①②の切片はと もに a²+b²-c² であるから K(0, a² + b²-c²) b 点Kは, y 軸すなわち辺BC の垂直二等分線上にあるから, ◆辺ACの垂直二等分線 b a-c AC に垂直で, 点 M(a+c, b) を通るから ①でcの代わりに とおくと,その方程式 得られる。 は,傾き の直線 ② △ABCの各辺の垂直二等分線は1点で交わる。

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

まず,aの角度にイコールがついていい理由ですが,
それはイコールの場合は,aの座標がy軸状ににきて、Y軸が底辺の垂直二等分線より,三角形ABCは二等辺三角形になるからです。また,b>0 c>0はここにイコールがついた場合三角形を作らなくなってしまう可能性があるからです。その点a🟰0でも先ほど述べた通り,二等辺三角形になるだけなのでOKってことです。
そして,B<90、C<90ってことは、辺ABと,辺ACが底面に対して垂直になってはいけない,つまり,点CのX座標と,点AのX座標が同じになったり,点BのX座標と,点AのX座標が一緒になってはいけないと言うことです。よってそうなります。

さな

とてもわかりやすかったです!ありがとうございます!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉