Mathematics
มัธยมปลาย
เคลียร์แล้ว

次の青いところがよく分からないのですがで何故Fダッシュで割るのでしょうか?そもそも割っていいのでしょうか?どなたか解説お願いします🙇‍♂️

関数 f(x) = x + 3x2 + x-1 の区間 −2≦x≦1 における最大値と最小 値, およびそのときのxの値を求めよ。 思考プロセス 《 ReAction 関数の最大・最小は, 極値と端点での値を調べよ 例題219) 極値を求めるために f'(x) = 0 を考えると, f'(x) = 3x+6x+1=0 より x= -3 ±√√6 ← これをf(x) に代入するのは大変。 3 既知の問題に帰着 《ReAction 高次式に無理数を代入するときは, 2次式で割った余りに代入せよ 例題12) f'(x) = 3x+6x+1 f'(x) = 0 とおくと x= 3±√6 ★3x2 + 6x + 1 = 0 より 3 -3 ±√3°-31 ここで,2<√6 <3 であるから -3-√6 x= 3 -2< < 3 5 3' 1 -3+√6 -3±√6 < <0 3 3 3 よって, -2≦x≦1において, 増減表は次のようになる。 3±√6 x= が区間 3 -3-√6 -3+√6 x ·2 ... ... ... 1 3 3 に含まれるかどうか調べ る。 f'(x) + 0 0 + f(x) 1 極大 極小 74 12 例題! ここで f(x) = (3x+6x+1)( 1 4 4 -x+ XC 次数下げをする。 3 3 3 -3±√6 -3±√6 x= となる 3 x= のとき, f'(x) = 3x²+6x+1=0 より 3 のは -3-√6 3 3+√6 4 -3-√6 = 3 3 4 -3+√6 3 3 3 43 4-3 4√6 = 9 4√6 f'(x) =3x2+6x + 1 = 0 のときであるから, f(x) を3x + 6x+1で割った 余りを考える。 y 9 8|9 4√6 4 < より 9 3 3-√6 <f(1) = 4, 3 (-3+√6) <ƒ(-2)=1 -3+√6 3 したがって x=1のとき 最大値 4 -3+√6 x= 3 のとき 最小値 4√6 - 9 -2 -3-√6 3

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

f(x)にそのままxの値を代入するのは大変なので次数下げをしています。そうすることで積のところ(青の波線)は0になるのであまりの部分だけにxの値を代入すれば良くなります。

星光

有り難う御座います!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉