Mathematics
มัธยมปลาย
เคลียร์แล้ว

(1)で判別式Dの計算方法を教えてください🙇🏻‍♀️‪‪
マイナスをどう処理していいかが分かりません…。

32 女子 練習(1) 不等式2x≧kx-4の解がすべての実数であるような定数kの値の範囲を求めよ。 ②115(2) すべての実数xに対して,不等式 ax2+x-1)<x+xが成り立つような,定数αの値の範 囲を求めよ。 (1) 不等式を変形すると x2-(k+2)x+4≧0 [ (1) 金沢工大 f(x)=x²-(k+2)x+4 とすると, y=f(x) のグラフは下に凸 ←f(x)のx2の係数は正 の放物線である。 よって、不等式f(x)≧0の解がすべての実数であるための条件 は,y=f(x) のグラフがx軸と共有点をもたない,または,x 軸と接することである。 であるから,下に凸。 ゆえに,2次方程式 f(x)=0 の判別式をDとすると, 求める条 件は D≦0 D={-(k+2)}-4・1・4=(k+2+4)(k+2-4) =(k+6)(k-2) ←D <0とすると誤り! D≦0 の “S” は,グラフ がx軸と共有点をもた ない,または,x軸と接 (k+6)(k-2)≦0拌するための条件である。) であるから, D≦0 より よって -6≤k≤2 (2) 不等式を変形すると [1] α-1=0 すなわち a=1のとき A-1-1-1-((1+))=0 (a-1)x2+(a-1)x-a<0...... ① ① は 0.x2+0x-1<0となり,これはすべての実数xにつ いて成り立つ。 [2] α-10 すなわち α=1のとき 04(1) >I ①の左辺を f(x) とすると, y=f(x) のグラフは放物線であ る。よって, すべての実数xに対してf(x) <0 が成り立つた めの条件は,y=f(x) のグラフが上に凸の放物線であり, x 軸と共有点をもたないことである。 ゆえに, 2次方程式 f(x) =0の判別式をDとすると, 求める 条件は a-1 < 0 かつ D<0 D=(a-1)-4(a-1)(-a)=(a-1){(a-1)+4a) =(5a-1)(a-1) 1=0 のとき, ① の 左辺は2次式ではない。 0=1 (S) ←このとき,グラフは常 にy < 0 の部分にある。 ←a-1>0 とすると, y=f(x)のグラフは下に 凸の放物線となり、 f(x) の値はいくらでも 大きくなるから、常に x)(f(x)<0が成り立つこと であるから, D<0 より (5a-1)(a-1)<0 3<0 よって// <a 言くく (8- はない。 1 a-1 < 0 すなわちα<1との共通範囲は <a<1 marc 5 [1],[2] から,求めるαの値の範囲は / <a≦1 5

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

図に描きました
一例です

はるの

めちゃくちゃ分かりやすいです!!
ありがとうございます😭🙌🏻✨️

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?