Mathematics
มัธยมปลาย

1枚目の?下線部がよく分かりません。右の丸で囲んである部分も同じような内容が書かれているのですがよく分からず…
私は2枚目のように解きました。私とやっていることは理屈は同じなのでしょうか?

基本 例題 10 支払いに関する場合の数 あの①①① 000 1500円,100円 10円の3種類の硬貨がたくさんある。 この3種類の硬貨を使っ て,1200円を支払う方法は何通りあるか。 ただし, 使わない硬貨があってもよい ものとする。 指針支払いに使う硬貨 500円 100円 10円の枚数をそれぞれx, y, z とすると 解答 500x+100y+10z=1200 (x,y,zは0以上の整数) この解 (x, y, z) の個数を求める。 からxの値を絞り、場合分けをする。 ~ 金額が最も大きい500円の枚数xで場合分けすると, 分け方が少なくてすむ。 支払いに使う500円,100円 10円硬貨の枚数をそれぞれx, y, 基本7 とすると,x, y, zは0以上の整数で 500x+100y+10z = 1200 すなわち 50x +10y+z=120 ゆえに 50x=120-(10y+z) 120 よって 5x≤12 不定方程式 (p.515~)。 Ay≥0, z≥0 75345 xは0以上の整数であるから [1] x=2のとき x=0.1.2 10y+z=20 この等式を満たす0以上の整数 y, zの組は (y, z=2,0),(1,10), (0,20)の3通り。 [2] x=1のとき 10y+z=70 この等式を満たす0以上の整数 y, zの組は (y,z)=(70) (6, 10), ...... (070) の8通り。 [3] x=0のとき 10y+z=120 この等式を満たす0以上の整数 y, zの組は ( (y, z)=(12,0), 11, 10), ..., (0, 120)の13通り。 [1] [2] [3] の場合は同時には起こらないから求める場合の 数は る P3+8+13=24 (通り) 50x≤120 これを満た す0以上の整数を求める。 110y=20-z≦20から 10y 20 すなわち y≦2 よってy=0, 1, 2 10y=70-z70から 10y≦70 すなわち y≦7 よって y=0, 1, …, 7 10y=120-z120から 10y≦120 すなわち y≦12 ., 12 よって y=0, 1, ... (S) 和の法則 31 311 1章 2 合の数
[例題 [0] xy、冬は0以上の整数で、 解)500円、100円、10円の枚数をそれぞれx、y、2枚をすると 1200円を支払う方法は、500x+100g+10z=1200と表せる。 500円(x)を使う場合は、500x≦1200より、x=0.1,2. ①x=0の場合 100y+10Z=1200. 10y+z=120 この等式を満たすのは、 ②x=1の場合 100y+10z=700 10y+z=70. ③x=2の場合 100%+10z=200 10y+z=20 この等式を満たすのは、この等式を満たすのは、 (y,z)=(0,120),(9,110) (4,2)=(0,70),(9,60)(y,z)=(920),(1,10) ①.② いい (11,10),(12,0) の13通り。 いい (6.10),(7.0) の8通り。 (2.0) の3通り。. ③は互いに排反なので、13+8+3=24通110.

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉