✨ คำตอบที่ดีที่สุด ✨
こういう問題の目的は、何とかして「無理数=有理数」の形に持っていくことです。
この問題における何とかする方法が二乗でした。
右側の解説のところにも書いてあるのですが、
√3=3r²-2という明らかに有理数である式をとイコールで結ぶことによって、矛盾を生じさせます。
結構他の問題でも二乗をして無理やり証明していく印象が強いので、困ったら二乗してみていい感じにならないか確かめてみるのもいいかもしれません。
質問がありましたら答えられる範囲で答えますので遠慮なく聞いてください。
すいませんあと一つ質問失礼します🙇
背理法を利用する証明の問題で、「1以外に正の公約数をもたない自然数」と出てきたのですがどういうことでしょうか、、?
具体的な問題を見てないからハッキリとは言えませんが、経験則から話させてもらいますね。
無理数が分数で表される…ってやつですかね?
その時は、「1以外に正の公約数をもたない」というのは、「分数がもう約分できませんよー」つまり、既約分数であるということを示す1文だと思われます。
伝わりましたかね…?
なるほど!!
伝わりました!!ありがとうございました!
わかりました!!矛盾を起こすことが大事なんですね⭐️
ありがとうございます!