Mathematics
มัธยมปลาย
เคลียร์แล้ว

出題者は、なんで少なくともひとつは1以上かどうかっていう問題を作ろうとしたんでしょうか?

12 不等式の証明/ABA-B≧0 a, b, e を正の実数とする. X= 3a+b 3b+c 3c+a Y= Z= a+3b' b+3c' c+3a について次の問いに答えなさい。 3 (1) 1/12 <X<3 を証明しなさい。 (2) X,Y,Zのうち、少なくともひとつは1以上であることを証明しなさい。 (3) <X+Y+Z<7 を証明しなさい。 5 3 差が0以上を示す (明治学院大径社法) A. Bがェの式として, A2Bを示すことを考えてみよう。このとき A-B20 を示すのが1つの定石である。 AとBを合流させることによって式変形の仕方の可能性が高 まるし、目標が0以上を示すことになるので、式変形の方針も定め易くなる.例えば,平方完成をして (実数)+(実数)の形を導いたり。 因数分解をして (正の数)×(正の数) の形を導いたりすればよい。 ■解答■ (1) x-1 = 3a+b 1 3(3a+b)-(a+3b) a+3b 3 3(a+3b) 3a+b a+3b 3-X=3- よって、1/32<x<3 8a 3(a+3b) >0 8b →0 a+3b a+3b 3Ca+3b)-(3a+b) a b は正の実数 X7.299 3/776 ← (2-0)za) (2+)=0 83000 3a+b (2) X-1= 3a+b-(a+36) --l= 2(a-b) a+3b a+3b a+3b すべての 同様にして, Y-1- 2(b-c) Z-16 2(c-a) 6+3c 分子の正 c+3a a,b,cのうちでαが最大のとき,bであるから X21 (a-b>0) a. b c のうちでもが最大のとき, beであるから 21 ) a,b,cのうちでcが最大のとき, c2aであるからZ21 (0-1) したがって, X, Y, Zのうち, 少なくともひとつは1以上である。 (3) (1)により, 1/32<x<3, 1/3 <<3, 1/32 <Z<3が成り立つ。 これ以降, 背理法を用いてもよい X <1 かつY <1 かつて<1と仮 定すると, a<bかつb<cかつ <a が成り立つ。 a<bかつb<cのときa<cと なるが,これはに矛盾する X21のときは,Y/1/32 1/3 とから、X+Y+Z>1+ 1 1 5 + Y, Zについても Xにおいて文 字を入れ換えただけだから, Xと 同様の不等式が成り立つ。 3 3 3 Y≧1, Z≧1のときも同様である。 また,ab.cのうちの最小のものに着目すれば(2)と同様にして,X,Y,Zの与式の左は 11/13 うち、少なくともひとつは1以下であることが分かる. X1のときは,Y <3, Z <3 とから,X+Y+Z<1+3+3=7 +1から出 てきた。 右辺の7は, 3+3+1 か ら出てくることに着目、 Zのときも同様である。 12 演習題(解答は p.28) (1)400のとき、不等式+2b+ab2 を証明せよ。また、等号が成り立つ のはどのようなときか (2) a,bを実数とする。不等式+1+12√(a-1)2+(6-1)を証明せよ。 また、等号が成り立つのはどのようなときか (2) 0以上なので (左)(右)20を ( 東北学院大) 示せばよい。 19

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉