Mathematics
มัธยมปลาย

213.
[3]で4a/3<1つまりa<3/4のとき...
と書いたのですが問題ないですか??
aは正の定数とされているので0<がなくてもいいように思うのですが。。

ラに 基本 例題 213 係数に文字を含む3次関数の最大・最小 ①①①①① aを正の定数とする。 3次関数f(x)=x-2ax+a'x の 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大 ] 基本211 重要 214 花に含まれて 指針▷文字係数の関数の最大値であるが,か.329 の基本例題 211 と同じ要領で,極値と区間の端 での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のようにな る(原点を通る)。 ここで, x= 以外にf(x)= =(1/3)を満たす f(3) (これをα とする) があることに注意が必要。 突域の端の 。 値は記入 sh a 3' 合分けを行う。 よって, 解答 f'(x)=3x2-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると α ( 1 <a) が区間 0≦x≦1に含まれるかどうかで場 a 3 >0であるから, f(x) の増減表 は右のようになる。 ゆえに a x=3, a (x − 3 ) ² (x-²3²-a)=0 [3] 0<a<1 以上から [注意] x : f(x) = 27a² +²5 x³−2ax²+a²x−27a³=0 4 3 0<a</ • a 3 0 極大 f'(x) + 4 f(x) ここで, x=1/3以外にf(x)=1 4 27 3 を満たすxの値を求めると 4 3 X ≦a≦3のとき 4 27 3 <α のとき *a< 1 すなわち0<a<2のとき a³ ... a x=1/3であるから したがって、f(x) 0≦x≦1における最大値 M (α) は M(a)=f(1) [1] 1</o/ すなわちa>3のとき 3 [2] 2012s1s1234 すなわち 24 sas3のとき M(G)=(6) M(a)=f(1) a 0 |極小 0 + 4 x==3a | f(x)=x(x²-2ax+a²) =x(x-a)2 から (+) N O |ƒ(7)=3-(-²3²-a)² = 24/7a²³ [1] YA [2] YA a³ O 1 1 [3] y -a²-2a+1 11 II 1 a 3 最大 43 1 ales 3 a 10 a 3 4 最大 a²-2a+1 1 aax a a 4 1 M(a)=a²-2a+1 M(a)= 27 9³ 4 曲線 y=f(x)と直線y=27dx=1/3の点において接するから, f(x) - 122742 は で割り切れる。このことを利用して因数分解している。 の区間 0≦x≦2にお 33 6章 37 最大値・最小値、方程式・不等式 P36

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉