Physics
มหาวิทยาลัย
問題3.1の解答の式がなぜこうなるかわかりません。解説お願いします
E'= (₁
O
2E0
1-
1
√√31²+1²
6
4E0
長い
R
1.3 ガウスの法則
例題 3
・一様に帯電した平面とガウスの法則
面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め
よ。
となる。よって
6
20
E=-
E0
E
000
図1.10
ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。
【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して
ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい
距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大
きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を
S とすると, ガウスの法則は
fe·ds=2E.S=OS
- E
to
6
13
080000
問題∞∞
fs of foo
sofs of
3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から
距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離
が20以内にある電荷によるものであることを示せ .
3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電
している。 平面によって分けられた各領域での電界を求めよ.
I
II
III
0
3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5×
10 N/C であった。 電荷の面密度はいくらか.
31
คำตอบ
ยังไม่มีคำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉