Mathematics
มัธยมปลาย
เคลียร์แล้ว

数2 図形と方程式の問題です

(2)についてです
マーカーでも引きましたが、どうしてこのよう変化しているのかが分かりません
1枚目が問題、2枚目が解説です

※ここからは写真3枚目の自分の考えです
()の中も含め、全て÷3をする方法と
地道に展開する方法を試してみましたが、上手くいきません

教えていただけると嬉しいです🙇‍♀️

座標平面上に,2点A(1,6), B (52) と C, x+y-2x-2y-7=0がある。 5.0 (1) 円 C, の中心は点 半径は3である。 (2)C上に点P(a,b) をとり, △ABPの重心をQ(x,y) とすると, 3√x- 6.6=3x-8である。 a= 点Pが円 C 上を動くとき、点Qの軌跡は,中心が点 である。この円を C2 とする。 半径が 1 の円
(2) Q は△ABPの重心であるから 6+6+2 x=a+1+5 3 3 - , ya よって, a=3x-6, b=3y-8 点Pが円 C 上を動くとき, (a-1)'+(b-1)^=9 であるから, (3x-7)2+(3y-9)2=9 (3y-9)² =9) 7 (x-2/2)+(y-3)^2=1 よって、点Qの軌跡は、中心が点 ( 173,3), 半径が 1の円である。 活
(点PがC)上を動くとき てんかい↓ (0-1) ² + 16-1)² = 9 (32-7)^²+(3g_a)2=9 31 =3 (x - 7² )² + (y - 3³ ) ² = 3 2 ² 3 92-42x+49+9y-54y+81=9 9x-42x+9y-54y+130 =9 9x²-42+9y-54g=-121

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

(3x-7)²+(3y-9)²=9
{3(x-7/3)}²+{3(y-3)}²=9
9(x-7/3)²+9(y-3)²=9
両辺を9で割れば、答えですね。
()²の形なので、()内を3で割るというのは、全体を9で割ることになるので答えがずれちゃってます。

このはくん

ありがとうございます!理解できました🙇‍♀️

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉