Mathematics
มัธยมปลาย
เคลียร์แล้ว

微分の問題です。
解説の四行目の式の右端にあるyが
五行目の式ではなくなっています。
どうしたら消えますか?
どなたか教えてください🙏

基本例題150 対数微分法 次の関数を微分せよ。 (x+2)^ (1) y=2x(x+1) 針 (1) 右辺を指数の形で表し, y=(x+2) x(x+1)として微分することもできるが計 算が大変。 このような複雑な積・商・累乗の形の関数の微分では,まず,両辺(の絶対値) の自然対数をとってから微分するとよい。 解答 (1) 両辺の絶対値の自然対数をとって よって (2)y=x* (x>0) (マルチ] ◆積は和, 商は差, p乗はか倍となり、 微分の計算がらくになる。 (2) (x)=x-1 や (α*)'=a*loga を思い出して,y'=xxx=x*またはy=x*log x と するのは誤り! (1) と同様に, まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する log|x|=1/28(410g|x+2|-210g|x|-10g(x+1)} * = (-42-²-²₁) y′_1 y xC 両辺をxで微分して y=1/3 (x+2)4 1 -2(4x²-x+2) 3 = 3 (x+2)x(x2+1) V x2(x2+1) ● 2x 2 (4x2-x+2) 3 x+2 3x (x2+1) Vx2(x+1) 3\x+2 14x(x2+1)-2(x+2)(x2+1)-2x2(x+2) (x+2)x(x2+1) x2+1 00000 〔(2) 岡山理科大] y 基本 149 10ga |y|=3 として両辺の自然対数をと る (対数の真数は正)。 なお、 常に x2 +1 > 0 M N |x+2|4 x2(x2+1) 対数の性質 loga MN=loga M+loga N -=10ga M-10ga N loga M-kloga M (a>0, a 1, M>0, N>0) 255 5章 20 三角、対数、指数関数の導関数
微分

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

問題文で与えられているyの式を代入しています

りょう

ありがとうございます!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉