Mathematics
มัธยมปลาย

至急でお願いします🙏‼️
赤の部分の方法を教えてください🙏

うる値 座標は ₁ の 2 のとき y=31 である。 CHART & SOLUTION 2次関数の決定 頂点、軸の条件が与えられたときは 基本形 y=a(x-p)^+αからスタート (1) y=a(x-1)2+3 (2) y=a(x+1)+α を利用して係数を決定する。 (3) 定義域に制限がないので, 「x=-3 で最小値-1をとる」頂点が点(-3,-1)で に凸→y=a(x+3)2-1 (a>0) と表される。 解答 (1) 頂点が点(1,3) であるから, 求める2次関数は y=a(x-1)2+3 と表される。 グラフが点(0, 5) を通るから 5=α(0-1)2+3 これを解くと a=2 y=2(x-1)2+3 (y=2x²-4x+5 でもよい) よって (2) 軸が直線x=-1 であるから, 求める2次関数は y=a(x+1)+α と表される。 グラフが2点(-2, 9), (1,3) を通るから 9=α(-2+1)+α, 3=α(1+1)^+q a=2 p. 107 基本事項 3 y=2(x+3)2-1 (y=2x²+12x+17 でもよい) 整理して a+g=9, 4a+q=3 これを解くと a=-2, g=11 よって y=-2(x+1)2+11 (y=-2x²-4x+9でもよい)ゆえに (3) x=-3 で最小値-1 をとるから、求める2次関数は- y=a(x+3)2-1 (a>0) (I と表される。x=1のときy=31 であるから (1) 31=α(1+3)^-1 これを解くと これは α>0 を満たす。 よって • RACTICE 68② 次の条件を満たす2次関数を求めよ。 ■ ) グラフの頂点が点 (13) で,点(-1, 4) を通る。 グラフの軸が直線x=4で2点 (21) (5-2 ← x=0 のときy= ←5=α+3 から。 x=-2のとき x=1のとき 辺々を引くと よってa=- 9=9-(- 最小値をもつ 注意 y=a(x- 形を最終の答え なお,本書では 開した y=ax 形も記した。

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉