Mathematics
มัธยมปลาย

(1)(ii)の設問で、yの値の増加・減少、頂点で場合分けをしているのは理解できますが、それ以外さっぱり理解できませんので、一からご教授いただけないでしょうか?

SoftBankの <質問 あ 35 最大取なペー 参 けて求めよ. (i) a <1 (1)y=-x+2ax (0≦x≦2)の最大値を,次の3つの場合に分 けて求めよ. ①1/12× (1) a<0 精講 (iii) 2<a (2)y=x²-4x(a≦x≦a+1) の最小値を,次の3つの場合に分 最大値 最小値の権利があるのは, 16:49 (i)a<l のとき x=a² 回答 -0 0≦a≦2 (1)は式に文字が含まれ, (2)は範囲に文字が含まれていますが,どち らの場合もグラフは固定し、 範囲の方を動かして考えます.このと き, 大切なことは場合分けの根拠で, 34 のポイントにあるように, 4a-4 x=0x=2 上のグラフより 最大値 0 (x=0) I. 範囲の左端 ⅡI. 範囲の右端 ⅢII. 頂点 の3か所です。(ただし, ⅢIはいつも範囲内にあるわけではない) このなかで,入れかわりが起こるときに場合を分ければよいのです. (たと えば,いままで左端で最大であったのに、次の瞬間には右端が最大になるとき) (ii) 1≤a≤2 解 (1) _y=-x²+2ax=1&px √² + a² 最小値は, (iii) 2<a Q 27% ● x=a (ii) 0≦a≦2のとき (i) 2<α のとき 4a-4-1 40-4 a=27=²014. ・4x2-4 :8-4 = 4 x=0 x=2 上のグラフより 最大値 α² (x=α) 4a-4 (a <1 のとき) (1≦a のとき) x=a x=0x=2 上のグラフより 最大値 4a-4 (x=2) となる. 「頂点がx=aなだけであってグラフ全体がx=aではないと いうことになりますか?」 閉じる ・グラフの頂点はy値に対してです。 「頂点がx=a」とは言い の範囲は

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉