Mathematics
มัธยมปลาย

数学Aです。
(2)の(ⅱ)と(3)の解き方がわかりません。
詳しく教えてください

解答編 p.53 21 図1のような一辺の長さが1の立方体ABCD-EFGH がある。 次の問いに答えよ。 (1) 立方体ABCD-EFGHの面の数 はア,頂点の数はイ,辺の 数はウエである。 図2のように,立方体から3か所 を切り取ると,面の数はオ , 頂 点の数はカ 辺の数はキだ けそれぞれ増加する。 図1 一般に, 凸多面体, すなわちへこ みのない多面体の頂点の数をひ辺の数をe, 面の数をfとするとクが成り立つ。 ア クに当てはまるものを, ①~⑤の キ に当てはまる数を答えよ。 また, うちから一つ選べ。 ⑩ v-e+f=2 ① ute-f=2 ③e-f-v=2 ④f-e-v=2 ~ ある。 (2) 図3のように, 図1の立方体ABCD-EFGHの辺BC上に点 P を,辺 CD 上に点 Q を,CP=CQ=1/12 となるようにとった。 また, 辺DH上には点Xをとった。 (i) 立方体ABCD-EFGH を,3点P, Q, Eを通る平面で立 方体を切ると、その切り口はケになる。 に当ては まるものを、⑩~⑤のうちから一つ選べ。 ⑩ 三角形 ① 四角形 ③六角形 ④ 七角形 - また,四面体 CPQG の体積が 12 (ii) 線分PG, GX, XQ の長さの和 PG+GX+XQ の最小値は - △PQGの面積は 長さは CI= ナ B テ EL ト ②e-f+v=2 ⑤f-ve=2 (3)図3において,CP=CQ=t とすると, APQ が正三角形になるのは t=√√√√ タ のときである。 となる。 ② 五角形 ⑤八角形 B になるのは t=- チ SEL コ サ 図2 時間 12分 + Q 図3 シス t IX 塩H 6 図形の性質 で のときである。 このとき であり, 点Cから △PQGに引いた垂線を CI とすると, CI の

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉