Mathematics
มัธยมปลาย
เคลียร์แล้ว

⑴と⑷ってピンクで書いた答えでも合ってますか、?(1枚目 2枚目)

私は学校で xー2=−7kという風にそのままマイナスをつけてkを求める方法で習ったのですが、今回の問題の解答説明では、⑴のとこに書き込んであるように、なぜかマイナスがをつけずにkを求めています。多分これが原因で模範解答と自分の解答が異なっているのだと思うんですけど、なんで模範解答の解き方がこうなのか教えてほしいです。(3枚目)

追記 急ぎなのでひとまず、合ってるかあってないかの返答のみでも助かります。

(283 )次の方程式の整数解をすべて求めよ。 *(1) 5x+8y=1 (2) 7x-2y=1 (3) 11x+9y=4 *(4) 3x-5y=6
うになる。 30=17-1 x=14, y=20 である。 17=13-1 リ=2 別解(互除法の計算までは同じ) a=36, b=25 とおく。 11=36-25-1より 3=25-11-2より これを③に代入すると 11-9k=-9(y+2) すなわち y+2=-11k 13=4-3 っは よって 11=a-b-1=a-b 3=b-(a-b)·2 したがって,求める整数解は っように x=9k+2, y=-11k-2 (klは整数) Se-5447 3ん3 =-2a+36 2=11-3-3 より 2=(a-b)-(-2a+36).3 3x-5y=6 2 4) エ=7, y=3 は, ① の整数解の1つである) よって 3-7-5·3=6 O-2 から すなわち 3と5は互いに素であるから, x-7は5の倍数 である。 よって, kを整数として, x-7=5k と表される。 これを3に代入すると 3-5k=5(y-3) すなわち yー333k したがって,求める整数解は x=5k+7, y=3k+3_(kは整数) 別解 方程式を変形すると 3(x-2)=D5y 3と5は互いに素であるから, x-2は5の倍数 =7a-106 の したが- 36-7-25-10=2 36-(2-7)- 25-(2·10)=4 よって, 7a-106=2 より 3(x-7)-5(yー3)=0 3(x-7)=5(yー3) ③ の 両辺に2を掛けて 参考2 36-14-25-20=4 したがって,求める整数x, yの組の1つは x=14, y=20 すなわち 30x+1 められ 注意 36 と 25 の互除法の計算は, ① 以降も続く が0の時点で与えられた等式の右辺4の約数2 が余りとして出てきたため, そこで互除法の計 SR2- -3 1ュ5k+2 5x+8y=1 ズ=ー3, y=2は, ① の整数解の1つである。 5.(-3)+8-2=1 5(x+3)+8(y-2)=0 5(x+3)= -8(yー2) 5と8は互いに素であるから,x+3は8の倍数 マすスある よって, kを整数として, x+3=8kと表される。 a= 13= 4=1 算を止めている。 1= 283 (1) よ。 よって の-2 から である。 よって,kを整数として,x-2=5k と表される。 これをのに代入すると すなわち のの *1 である。 3-5k=5y すなわち y=3k よう 3 したがって,求める整数解は x=5k+2, y=3k (kは整数) 5k+7=5(k+1)+2, 3k+3=3(k+1) であ るから,k+1=mとおくと,(*) は これを3に代入すると 両辺 久ない 5-8k=-8(y-2) すなわち y-2=-5k 参考 したがって,求める整数解は O- x=8k-3, y=-5k+2 (kは整数) x=5m+2, y==3m (mは整数) すな 46 7xー2y=1 x=1, y=3は, ① の整数解の1つである。 7-1-2-3=1 7(x-1)-2(yー3)3D0 7(x-1)=2(yー3) 7と2は互いに素であるから, x-1は2の倍数 と表すこともできる。 倍 よって 30x+17y=2 よ。 284 (1) のの右辺を1とした方程式30x+17y=1 につい て,x=4, y=-7はその整数解の1つである。 よって 30-4+17-(-7)=1 両辺に2を掛けて の-2 から る。 すなわち し である。 参考 よって, kを整数として, x=1=2k と表される。 30-8+17-(-14)=2 う の-2 から 30(x-8)+17(y+14)3D0 30(x-8)=-17(y+14) これを③に代入すると 4€ 7.2k=2(y-3) すなわち y-3=7k すなわち 35 30 と 17 は互いに素であるから,x-8は17 の倍 数である。 よって,kを整数として, x-8=17k と表される。 これを3に代入して したがって,求める整数解は したがって, 求める整数解は 1 x=2k+1, y=7k+3 (kは整数) 11x+9y=4 x=2, y=-2は, ① の整数解の1つである。 11-2+9-(-2)=4 11(x-2)+9y+2)=0 11(x-2)= -9(y+2) y+14=-30k よって の 0-2 から x=17k+8, y=-30k-14 (kは整数) すなわち 参考1 30 と17に互除法の計算を行うと,次のよ
(例題)4x+7y=1の整数解をすべて求めよ。 -) 42+7·(-1) = 1 4oc)+7 (は+1)20 2221) 4と7は互いに素より、 5x-22-7k +1 = 44 (に塗数) SX2-7k+2 *4-1 32. 20 16

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

(1)は合っています

(4)が違っています。

みみさん。

ありがとうございます!

みみさん。

できれば3枚目の質問にも回答欲しいです…🙇‍♀️

みと

>私は学校で xー2=−7kという風に
 そのままマイナスをつけてkを求める方法で習ったのですが、

●3枚目に書いてあるのは、模範解答ですか

 それとも、学校で習った方法(みみさんのやった方法)ですか?

>今回の問題の解答説明では、⑴のとこに書き込んであるように、
>なぜかマイナスがをつけずにkを求めています。
>多分これが原因で模範解答と自分の解答が異なっているのだと思うんですけど、
>なんで模範解答の解き方がこうなのか教えてほしいです。(3枚目)
●赤の書き込みが:x=-8k-3、y=5k+2
●その解説の解答が:x=8k-3、y=-5k+2

これは、どちらでも合っています。

結論から言うと、この正負は

 元の 5x+8y=1 のxとyの係数が同符号なら

         2つの解の係数は異符号になります

 ★元が異符号なら、解の方が同符号です 

みみさん。

遅くなってしまいすみません。。
3枚目のは学校で先生の板書を参考に書いたものです。
赤の書き込みは、2つの解は同符号なんですけどなんで合ってるとも言えるんですか、?

みと

>赤の書き込みは、2つの解は同符号なんですけどなんで合ってるとも言えるんですか、?

●言葉足らずで、説明不足でした。すみません。

元の 5x+8y=1 のxとyの係数が同符号なら、xとyの2つの解の係数は異符号になります

 ということは

●赤の書き込みが:x=-8k-3、y=5k+2 で、xを表すときのkの係数が「-」、yを表すときのkの符号が「+」で互いに異符号

●解説の解答が:x=8k-3、y=-5k+2 で、xを表すときのkの係数が「+」、yを表すときのkの符号が「-」で互いに異符号

 ということです。

★何で、上のようにすると、合っているかという事は、大まかに言うと

 xとyの符号が同符号なら、xとyの一次式が一定の値になるので、「xが増えたらyが減る」「xが減ったらyが増える」からです

みと

3枚目の解答について

 4(x-2)=-7(y+1) の後、略されていることを少し足すと

 ★両辺を{4,7}の最小公倍数28でわり

    (x-2)/7=-(y+1)/4=kとして ・・・ ①

     (x-2)/7=k から、x-2= 7k で、x= 7k+2

    -(y+1)/4=k から、y+1=-4k で、y=-4k-1

ここで、(x-2)/7=-(y+1)/4=-kとすると ・・・ ②

     (x-2)/7=-k から、x-2=-7k で、x=-7k+2

    -(y+1)/4=-k から、y+1= 4k で、y= 4k-1

このようにどちらも同じです

★先生は②、解説は①という感じの様です

みみさん。

丁寧にありがとうございます!!スッキリしました!!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉