✨ คำตอบที่ดีที่สุด ✨
まず、仮定として与えられているAB=OAは使うに決まっていますよね。そのまま他の辺に関して見てやると、これといった情報は得られないので、角の方で攻めるしかないですね。
ここで、△ABDが直角三角形であることに着目すれば、直角三角形の合同条件が使えるんじゃないかと気づけますね。△ABDに関して∠ADB=90度なので、対応する△OAEに関しても∠OEA=90度となるはずです。「二等辺三角形の頂角の二等分線は底辺を垂直に二等分する」という性質を使えばよいです。入試の観点から見ても、二等辺三角形が出てきたらこの性質を使う可能性が極めて高いし、頂角の二等分線が引かれていなくても補助線として引いてみるべきです。
あとは、他の一辺もしくは他の鋭角が等しいことを言えばよいですね。
まだ使ってない条件ってないかな?って考えたら、まだABが接線なことを使っていませんね。接線と言われたら、何か思いつきますか?高校生ならここで接弦定理という定理を使うでしょう。ですが、中学校の教科書的には習わない(難関高校の受験生なら塾等で習うかも)ので、別の方法で行きます。
中学校で接線と言われたら、3つ引き出しを持っていてほしいですが、そのうちの1つとして接線⊥半径がありますね。それを使えば
三角形ABDについて内角の和180度より
∠ABD=180-(90+∠DAB)=90-∠DAB
一方で、接線⊥半径から
∠OAE=90-∠DAB
となるので
∠ABD=∠OAEが示せます。
これで直角三角形の斜辺と一つの鋭角が等しく、合同が示せました。
分かりやすい解説ありがとうございました🙇