学年

質問の種類

数学 高校生

解説で|→のような記号は何を表しているのか分からないので教えて頂きたいです。

4. 逆関数についてきちんと説明しておきます。 77- 実数の区間 I で定義された関数 f の値域をJ (これも実数の部分集合) と すると,f:I→Jです.fの逆関数」とは,I∋x f(x) ∈ J の逆の対 応のことで,それをg とかくと,g:Jay → g(y)∈I で y = f(x) ⇔ x=g(y) がすべてのx∈I, y∈Jで成り立ちます.したがって, f(g(y))=y(yeJ), g(f(x))=x (x ∈I) (3) がつねに成り立ちます. 逆関数が存在するための条件はf: IJが1対 1であることで,微積分のためにはf は Iで増加関数または減少関数であ るときだけ(そのような区間だけで)を考えます. またf, gが微分可能の ときには,逆関数の導関数は③を微分すると得られます.例えば第1式をy で微分すると,合成関数の微分により f'(g(y))g(y)=1 :. g(y) = f'(g(y)) であり,f(x) = sinx,1=(-1)J=(-1,1) (それぞれ実数の開 区間) のときには sing(y) = y だから, 「のとき のとき 1 1 g'(y) = = 1 V1-12 cosg(y) V1 - sin2g(y) yをxにおきかえたものが3. 例 II (1) の答です. 逆関数は②により定義されるもので, ひらたくいえばy=f(x) を x につ いて解いたものです. これは普通は g(y) のように y の式になりますから, 独立変数を x にするという慣習によりy を x におきかえて g(x) とします. だからy = sinx の逆関数を独立変数 x で表すと x = siny を y について解 いたものになります. また, ②からわかるようにxy平面でのy=f(x) の グラフとx=g(y) のグラフは同じです.xとyを入れかえて y = g(x) と するので,そのグラフはy=f(x)のグラフと直線y=xについて対称にな るのです.ここでは, 逆関数については②, 同じことですが③が本質である ま ことを強調しておきます. なお, f-1 という記号があるので,もちろん使ってもいいのですが、 微積 分ではまぎらわしいので避けた方がよいでしょう. 実際 sinx は sinx の 逆関数なのか sin x の逆数なのか、わからなくなってしまいます。

解決済み 回答数: 1
数学 高校生

数学 軌跡 反転 この問題を複素数を利用して解く方法を教えてください

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 00000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP 上の 点Qを,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 (B) Q は, 0 に関してPと同じ側にある。 点Pが直線x=1上を動くとき,点Qの軌跡を求めて、図示せよ。 〔類 大阪市大 指針 求めるのは、点Pに連動して動く点Qの軌跡。 基本110 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P, Qの関係は 点Qが半直線 OP 上にある⇔ X = tx, Y = ty となる正の実数 tが存在する このことと条件(A) から, tを消去して,X,Yを x, yの式で表す。 そして、点Pに関 する条件 X=1より, x, yの関係式が得られる。 なお, 除外点に注意。 点 Q の座標を (x, y) とし, 点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x,y) P(X, Y) X=tx, Y=ty (tは実数) ただし、点Pは原点と異なるから t=0, (x, y)≠(0, 0) 更に, (B) から, t>0である。 x2+y2 参考事項 反転 表す ※定点を中心とする半径r (r>0) の円がある。 点を通る直 に, 0と異なる点P をとり, 半直線OP 上に点P' を OP・OP'= によって定める。 このとき,点Pに点P' を対応させることを といい,点を反転の中心という。 また、点Pが図形F上にあるとき, 点P' が描く図形F' をF 反形という。円や直線の反転に関しては,次のような性質が (1)定点 0 を通らない直線の反形は, 0を通る円にな (2) 定点を通る円の反形は, 0 を通らない直線にな (3) 定点を通らない円の反形は, 0 を通らない円に [(1)の証明] O を通らない直線を l とする。 0から lに下ろした垂線と l との交点をP。 とし, Poを反転した 点をP とする。 また l 上のP。 以外の点をPとし,Pを反転した点をP'とする。 OPOP=OPOP' より, OP: OP'=OP : OP であるから、 2組の辺の比とその間の角がそれぞれ等しくなり OPPOP'P よって ∠OP'P'′ = ∠OPP=90° したがって, P'は線分 OP を直径とする円を描く。 ただし, OP'>0であるから, 点0は除く。 [(2) の証明] 線分 OP。 が円の直径となるように、点Po をとり, P 反転した点をP とする。 また, Po以外の点Pを反転した点を (A)から √x2+y2√(tx)2+(ty)2=4 ゆえに t(x2+y2)=4 よって t= 4 x2+ye したがって X= 4x x2+y2. 4y Y= tを消去する。 とすると, (1) と同様にして 4x 点Pは直線x=1上を動くから =1 x2+y2 ゆえに y X=1 に X= 代入する。 4x x2+y2 を 線分OP が直径であるから よって (x-2)'+y2=4 2- したがって,求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 14 x ただし, (x,y)≠(0,0)である から, 原点は除く。 -2- 図示すると、 右図のようになる。 x2+y2-4x=0 注意 本間は、反転の問題 である。 反転については, 次ページ参照。 OPPOP'P ∠OPP=90° よって,∠OP'P'=90°から、点P'は,点P を通り OPに垂 な直線上を動く。 [ [3] の証明] 右の図のように、線分 P.P が円の直径 となるように、点Po, P1 をとり, Po, P, を反転し た点をそれぞれP, P' とする。 また, Po, P, とは異なる, 0 を通る直線と円との 交点をPとし,Pを反転した点をP'とする。 (1)と同様にして AOP POO PC 0 Po

未解決 回答数: 0
数学 高校生

数学2B 軌跡の問題です。 (3)で “ここで⑤よりX=-2+2/1+a^2” とありますが、なぜそうなるのでしょうか?💦

例題 114 軌跡 〔8〕・・・ 線分の中点の軌跡 (2)・・・(札 円 x2 +y2 = 1 ・・・ ① と直線 αax-y+2a=0 ・・・ ② について (2) αが (1) で求めた範囲で動くとき, その2交点を結ぶ線分の中点の座 (1)円 ①と直線 ② が異なる2点で交わるとき, αの値の範囲を求めよ。 をαを用いて表せ。 (3)(2)の中点の軌跡を求めよ。 (1) ①と直線 ② が異なる2点で交わる ① ② を連立した2次方程式 (*) の判別式DがD> 0 ①の中心と直線②の距離) (①の半径) どちらで考えるか? (2)素直に考えると・・・ X = 中点(X, aX-Y- したがっ ゆえに, (3)5 X=- よって ↑計算が繁雑 ⑥ の y 2次方程式(*)から2交点の座標を実際に求めて考える。 求めるものの言い換え 思考プロセス 2次方程式(*)の2解をα, βとする 解と係数の関係 中点のx座標 a+β 2 《ReAction 線分の中点の軌跡は,解と係数の関係を利用せよ 解 (1) ①,②より,yを消去して整理すると ⑦を Y2 = 0 よっ a a+β. ここ 2 ④よ 例題113) 軌跡 4 D>0より 3 ・④ であるから √3 例題 (1 + α²)x2 + 4ax + 4a² -1 = 0 ... ③ 94 ① ② は異なる2点で交わるから, ③の判別式をDと すると D > 0 D == (2a²)² - (1+ a²)(4a²-1) = −3a²+1 -3a²+1>0-6 円 ①の中心と直線 ② の 距離を d,円 ① の半径を r として,d<r から求 めることもできるが、(2) で交点の座標を考えるか ら,③を考える。 Play Back 8 参照 √3 Point (1) ② <a< 例題 130 (2) αが(1)で求めた範囲を動くと き,円 ①と直線②の2交点の x座標は,xの2次方程式 ③の 2つの実数解である。 3 3 1 <0 + (3 (2 (X, Y) 1 より ** ④ これらをα, β とすると,解と 係数の関係より (1) a<± としないよう -2-1a O B a+B= 4a² 1+ a2 とすると よって,円 ①と直線 ② の2交点の中点の座標を (X, Y) la+B= b a に注意する。 ■2次方程式 lax+bx+c=0の2つ の解をα,Bとすると 練習 11 198 laβ=

解決済み 回答数: 1
1/78