学年

質問の種類

数学 高校生

ベクトルについてです。なぜ線分上に乗ったらベクトルが全て外れるのですか?

求めよ。 する。 せ ヘOF を求め、 171 ると を満たして (1) P40A OB (2)△ABCの面積を求めよ。 19 (高知) において、 AB-5, BC 7, CA-3 とする。このときの であるので AB AC である。 外接円の中心をPとする。このと (1)とのなす角を0 (0°SO 180% とす 0.8=10 || | co304×3 × co30 =12cos0 AB+RACTE, MO, - (3) AQAP (数) とすると 解答編 315 180°であるから よって -1≤ cos 0 ≤1 -12 12cos 0 12 -12-12 Qは対角線上にあるから すなわち したがって,aの最大値は 12. 最小値は12 これを解いて ゆえに AQ=+1+5 したがって BQ:QF=5:4 5+4 20B) 173 針 a-26-la-4a 6+462-10 =4-4a・1+4×325247. より1212であるから 52-4x12 52-4a b≤52-4x(-12) 4-26≤1000 すなわち 2520であるから 2≤a-20 ≤10 よって、a-26の最大値は10, 最小値は2 172 正六角形の3本の対角 AO-20 JA B 6 1 0 F AD, BE, CFの交点を 0とする。 1) AC=AB+BCO NO B =AB+ AO =a+(a+b) =2a+b AD=2AO=24+26 点Hは頂点Aから辺BCに下ろした垂線上に ある。これが△ABCの垂心であることを証明 するには、 BHICA, CHIAB であることを 示す。 OA=a, OB=b. DC=c とする。 点Oは△ABCの外心で あるから a-b-cA 点Mは辺BCの中点であ B P/ 'E MNC るから OM= b+c 1-s D OM⊥BC であるから 2. OM/AH 学 AE=AF+FE=AF+A+(a+b) =a+26 ② CP:PE=s:(1-s), DP:PF=t: (1-f) と すると AP= (1-s) AC+ sAE =(1-s) (2a+b)+s(a+26) =(2-s)a+(1+s)b AP= (1-4)AD+LAF ....... ① ゆえに AH=20M =b+c よって したがって 問題 OH=OA +AH = a+b+c BH-OH-OB &T0<; J<t =(a+b+c)-b CH=OH-OC ①,②から =(1-1)(2a+26)+1b =(2-21)a+(2-1)b (2-s)a+(1+s)b=(2-21)a+(2-1)b 0, 0, aは平行でないから 2-s=2-2t,1+s = 2-t これを解いて 3/13 S= よって AP = √ √²+10 =(a+b+c)- =a+b よって BH.CA=(a+c)(-2) CH.AB=(a+b)(-a) =-=0 BH = 0, CA ≠0, CH ≠ 0, AB ¥0 であるから ゆえに BHICA, CHLAB BHICA, CH⊥AB したがって, 点Hは△ABCの垂心である。 22

解決済み 回答数: 1
英語 高校生

英語の問が分からないので誰か解ける人解説込みでお願いします

CHAPTER 4 関連英文 "ninge som ow lit andarwood, dodal Passage 1: Australian Woman Who Died after Battling Rare Cancer Penned Inspirational Viral Letter: Each Day is a Gift' ・戦い戦闘 珍しい希少 brow adi b A 27-year-old Australian woman who lost her battle with a rare form of cancer asked her family to brovndaimuw loline how t share the last letter she wrote on her deathbed, 臨終、臨終の床 bed ada li vorf beslás ban obished alloft t Duralin 08 od nesto lana yad al Holly Butcher's last words soon went viral on Facebook after being posted on January 3, one day I rugged one dado dae Prow of an before she passed away, with more than 131,000 people sharing it on the social network. Niggad evil of bedbow Jaritannig gid sysd tabibl 在住居住者 ソーシャル・ネットワーク aid og H Holly, who resided in Grafton in New South Wales, Australia, began her lengthy note by saying that vidiberon and boa she planned to write "a bit of life advice." 実現する 変怪、奇怪な 死亡率 aude doos bad ead.. sailinil orie “It's a strange thing to realize and accept your mortality at 26 years young. It's just one of those things you ignore," she started. “The days tick by and you just expect they will keep on coming; until 20nd ablo ed ad ayawin lliw dad.blow on the unexpected happens." 予想外、予期せぬ 思いがけない 傷つきやすい静 予測不能不透明 Continuing, she wrote, “That's the thing about life. It is fragile, precious and unpredictable and each day is a gift, not a given right. I'm 27 now. I don't want to go. I love my life. I am happy. I owe that to my loved ones. But the control is out of my hands." i delo at guiwolle ads to doid W (B belustai tog Holly then encouraged her family and friends to stop whining “about ridiculous things. " 勇気づけられた 軽微な問題 あほらしい 提案された ばかばかしい 認める承認 “Be grateful for your minor issue and get over it," she suggested. “It's okay to acknowledge that something is annoying but try not to carry on about it and negatively affect other people's days." thegriot yllauen aw ob ネガティブに否定的H うるさ Holly also advised that people don't "obsess” over their bodies and what they eat.dla sV アドバイス 誓うる 助言 とりつくろう 取り憑 audul art ni sunitaoo lw asvil lieb m “I swear you will not be thinking of those things when it is your turn to go," she wrote. “It is all SO insignificant when you look at life as a whole.” 軽微、取るに足りない 微々たるもの After advising her family and friends to closed her letter by encouraging them to aged liw tedw toibong avawl se their money “on experiences” instead of presents, Holly use their merit huuore algoog art nodaum の代わりに ではなく give back. yasaesoonnu yilshom riodigandinemal 善行 ぜんこう “Oh and one last thing, if you can, do a good deed for humanity (and myself) and start regularly amaldory juoda daum col pai donating blood," she wrote. “It will make you feel good with the added bonus of saving lives.” 寄附 寄付 人命救助 命を救う

解決済み 回答数: 1
数学 高校生

(2)です。AG=sAE+tADなら納得いくのですが、Ae=はよく分かりません。解説をお願いします🤲🏻

135 平面と直線の交点 四面体 ABCDの辺AB を 2:3に内分する点をP、辺ACを1:2に内 分する点をQ、辺AD を 2:1に内分する点をRとする.また,三角形 PQR の重心を G とし,直線 DG と平面ABC の交点をEとする. (1) AG をAB, AC, AD を用いて表せ. (2) AEをAB, AC を用いて表せ。 また, DG : GE を求めよ. (平面ABC)より、 $8-) (0 0 5)-(0 解答 (1) 条件より、AP= 12/3 AB, AQ=1/3 AC, AR=2/3 AD である。 ORIE DO Gは三角形 PQR の重心であるから, よって1/35 KAB+ 1/2kAC+(1-272) AD 一方,Eは平面ABC 上にあるから, 9 AG=1/13 (AP+AQ+AR)=1/(1/AB+/AC+/AD = 1/85AB+/AC+ / AD 35 3 (2)Eは直線 DG 上の点であるから, DÉ=kDG ( は実数) とおける.これより, AE=kAG+(1-2) AD」 HA+AO-HO A 2 =kl k 15 AB+ /10/AC+ //AD+(1-k)AD 9 0-40-80-HA 15/+8As+ÃO= したがって AE=sAB+tAC (s, t は実数) ①,②において, AB, AC, ADは1次独立であるから 2 153k=s かつ 1k=tかつ 01-272k 9 DE 解説講義 平面と直線の交点は, 求めたい点に関して (I) 直線上の点であること 解答の①) B ベクト (西南学院大) -50-54 OBATSH D +0.0) G R これを解くと,k=1 となるから、①より, 0 Te AE= AB+AC LABO さらに,k=0 より,DE = 2 DG となるから, DG: GE=7:2 C E P B QA (ⅡI) 平面上の点であること (解答の② 1つの係数比較をすることが定番の解法である.

解決済み 回答数: 1
1/28