学年

質問の種類

数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1
数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
数学 高校生

2枚目の2個目の注のやり方でやりたいのですがこの時1個目の解uってどうやって見つけますか?

TOMAC C2-38 (386) 第5章 複素数平 Think 例題 C2.19 方程式の解 (1) 方程式 2=1 を解け (2)883の4乗根を求めて、複素数平面上に図示せよ。 [考え方 α(複素数)の解を求めるには、αを極形式で表しを極形式 z=r(cos0+isin 0) (r>0) とおく。 2はドモアブルの定理を利用する. 両辺の絶対値と偏角を比較する. (2)883iのすべての解が8+8√3i の4乗根である。 (1)=r(cos0+isin0)(r>0,0≦6<2z) とおくと 2°=r(cos60+isin 60) 解答 また, 1=cos0+isin0 2 =1であるから, **** ↑極形式で表す時の決まりみたいなも 0.2.4... 両辺を 極形式で 比較 絶対値 r(cos60+isin60)=cos0+isin 0 両辺の絶対値と偏角を比較して, r=1 r>0より。 r=1 比較 60=2xk (kは整数) より 0=xk 3 偏数 3 ここで、002、すなわち,0≦x<2であるから、これを満たす kの値は, k= 0, 1,2,3,4,5 したがって、2=1の解は、z=1-{cos(nxk)+isin(xk)} と表せるの で,求める解は, + 0 =1200 k=0 のとき zo=cos0+isin0=1sin k=1のとき, Z₁=cos+isin n_13 + -i 3 2 2 k=2のとき, +2 [2]]] 22=cos+isin-=- 3 1-2 √3. + i 2 k=3のとき,z3=cos+isinz=-1 k=4 のとき, 4 z4=cosgrtisingn= 4 [32 12 √3 k=5のとき, よって, 土 -i, 100円 2 24=-8+8 (2) 比較 絶対感 25=COSπtisin π= 1v3 z=±1, 8+8√3iの4乗根を z= (coso+isin) (r>0,0≦02) とおくと、 ź^=y(cos40 + isin40)=18+8 1001 010 8+8/3i=16/cos/3rtisin/27) であり2=-8+8/3i であるから、 r(cos40+isin40)=16(cos / n+isin / 27 ) 両辺の絶対値と偏角を比較して,r=16 r>0より, r=2 5 5 13 √3. -i 31 2 2 sino. + -i √3 2 2 それ (T) BS OP (S)

解決済み 回答数: 1
1/10