学年

質問の種類

数学 高校生

数IIの二項定理に関する問題で質問です 赤い線の部分が全く理解出来ていません。わかりやすく説明していただけると嬉しいです🙏🏻🙏🏻

21 」の考えを利用して証 5 (1) の数を,次の2通り nCkxk )。 ■Xn-1 Ck-1 通り える。 2通りがある 解答 ば、n個の要素 一選ぶと考える。 重要 例題 6 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2)2951900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 (1)これをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)100= (1+102 ) 100 これを二項定理により展開し、各項に含ま れる 10^(nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99:00=(-1+100)100= (-1+102) 100 として, (1) と同様に考える。 (2)(割られる数)=(割る数)×(商)+(余り)であるから, 2951 を900で割ったと きのを M, 余りを とすると, 等式 2951= 900M+r (M は整数,0≦x<900)が成 り立つ。295=30-1)51であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (ア) 101100(1+100)'OO=(1+102) 100 =1+100C1×102+100C2×10^+10°×N =1+10000+495×105 + 10°×NEY (Nは自然数 この計算結果の下位5桁は,第3項 第4項を除いて も変わらない。 よって, 下位5桁は 10001 展開式の第4項以下をま とめて表した。 10"×N (N, n は自然数, n≧5) の項は下位5桁の 計算では影響がない。 1 章 3次式の展開と因数分解、二項定理 00100-( 1100)100_(_1+102) 100

解決済み 回答数: 1
数学 高校生

数II、二項定理による証明に関する質問です 赤でラインを引いた部分について、丸をつけたnCrのところが書かれているのは、そもそもの問題と比較した時に証明する等式にもnCrが含まれているからで合っていますか? それともなにか理由があるのでしょうか? 塾の教材には2枚目の①の... 続きを読む

基本5 二係数と式の証明 (1) 19 00000 (822-1.2... n) が成り立つことを証明せよ。 (2)(140)"の展開式を利用して、次の等式を証明せよ。 (1) Co-C1+Ca C-C+2,C,.....+(-2)",C.+....+(-2)"C"=(-1)" (1)C +(-1) C++ (-1)".C.-0 p.13 基本事項 を利用して、 kC をそれぞれ変形する。 10 (2)定理(.13基本事項■)において、 a1bx とおくと 3次式の展開と因数分解、二項定理 (1+x)^=.C+CistaCoナ・・・・・・+C++C ****** ① 挙式のと、与式の左を比べることにより、①の両辺でx=1 とおけばよいこと に気づく。同様にして、(f)()ではに何を代入するかを考える。 (U) A.C.-A. (一) 解答 (n-1)! (k-1)!(n-k)! (-1)! R-CA-1- (1)1((n-1)(A-1)}! したがって RaCa=-1-1 4n!-n(n-1)! (n-1)! (k-1)!(n-k! すべてのxの値に対して成り立つ。 ① (2)二項定理により、次の等式①が成り立つ。 (1+x)"=Cat.Cix+++CsJ......Cax* (ア)等式① で, | とおくと (1+1)=,Co+C11+1+......+.+......+C・1" よって Co+++......+C+....+Ca=2" (イ)等式①で、x=-1とおくと (1-1)"=C+C (-1)+(-1)*+....+C (-1)+..+.C.(-1)* よって Co-C+C+(-1) Cy+....+(-1)",C,=0 (ウ)等式①で、x=-2とおくと (1-2), Co+ C (-2)+2(-2)+....+°C, (-2)"'+....+C (-2) Co-2,C,+2,C2......+(-2)"C,+......+(-2)",C=(-1)* よって 素数とするとき (1) から RCx=poCi-l(p≧2;k=1,2,,p-1) この式はC が必ず』で割り切れることを示している。 次の等式が成り立つことを証明せよ。 5 -+-+(-1)*1 2" 2" (2)が奇数のとき Cot,C2+....+.+.+....+, Co=20-1 (3)nが偶数のとき Cat,C+....+....+aCa-1=24 P.23 EX3、

解決済み 回答数: 1
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

この問題の、(ア)の、Nの意味がわかりません💦 あと、495というのはどこから出てきた数字でしょうか??

して証 通り 通り 重要 例題 6 n桁の数の決定と二項定理 (1)次の数の下位5桁を求めよ。 10110 100 (イ) 99100 (2) 2951 を900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 指針 (1)これらをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると、必要とされ る下位5桁を求めることができる。 (ア) 101100 (1+100)100= (1+102)100 これを二項定理により展開し、各項に含ま れる 10" (nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99100= (-1+100)100= (-1+102) 100 として (1) と同様に考える。 (2) (割られる数) = (割る数)×(商) + (余り) であるから, 2951900で割ったと きの商をM, 余りを とすると,等式 291 = 900M+r (M は整数,0≦x<900) が成 り立つ。2951(30-1)であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (7) 101100=(1+100) 100=(1+102) 100 =1+100C1×102+100C2×104 +10°×N ☆ax105+5ケかたち =1+10000+495×10°+10°×N ? (Nは自然数 == この計算結果の下位5桁は,第3項,第4項を除いて も変わらない。 1 章 1 3次式の展開と因数分解、二項定理 展開式の第4項以下をま とめて表した。 にした 10"×N (N, nは自然数, n≧5) の項は下位5桁の 計算では影響がない。 ある 解答 ■要素 考える。 よって, 下位5桁は 10001 (イ) 991=(-1+100)’=(-1+102)100 =1-100C×102+100C2×104+10°×M =1-10000+49500000 +10° × M =49490001+10°×M (Mは自然数) この計算結果の下位5桁は,第2項を除いても変わら ない。 よって、下位5桁は 90001 る。 (2) 2951 (30-1)51 =nC₁ = C2 L しれ ...... =3051-51C1×3050+・・・ -51C49×302+51C50×30-1 =302(3049-51C1×3048 +・・・・・・-51C49) +51×30-1 =900(3049-51C1×304+-51C49) +1529 =900(3049-51C1×3048 + - 51C49+1) +629 展開式の第4項以下をま とめた。 なお,99100は 100 桁を超える非常に大 きい自然数である。 900=302 (-1)"は rが奇数のとき が偶数のとき 1 1 1529=900+629 ここで,30%-51 C1×3048 +51C49 +1 は整数であるssp から 2951 を900で割った余りは 629 である。 。 も 練習 (1) 10115 の百万の位の数は「 である [南山大 ]

解決済み 回答数: 1
1/9