学年

質問の種類

現代文 高校生

論理国語「疑似群衆の時代」に関する質問です。 文中の表現でわからない部分があるので、説明して頂きたいです。 「ひと頃透明性の高い建築」 「建築そのものを消し去り、流動する映像体としての建築物として存在する」 「ピクチャープラネット」 また、学校の授業で「19世紀以降市民社会... 続きを読む

204 ■擬似群衆の時代 ① 街角で見かける大型スクリーン、いわゆる街頭ビジョンが新宿駅東口に現れたのは、 一九八〇年代の初めだった。ビルの壁面に映し出される映像は、当初白熱電球によるもの だったが、それでも東口駅前に群衆が絶えなかったのは、万博などの催し以外で本格的に 設置された最初の例のひとつだったからだろう。巨大白黒テレビという趣のスクリーンを、 すぐにアートとして取り入れたのがビデオアーティストのビル・ヴィオラだったことはよ く知られている。 4 それから三十年近く経過した現在、私たちの都市にはさらに大型のスクリーンが氾濫す ることになった。例えばマンハッタンのタイムズスクエア周辺のビルは、その壁面のほと んどがスクリーンと化している。そこではケーブルテレビ局が建物全体を覆う曲面スク リーンに四六時中ニュースを流しており、広場の反対側では同じように広告が流されてい みなと ちひろ 港千尋 5 10 参照 と。 tan 現代社会を読み解くため に6→400ページ 新宿駅東口 東京都新宿 区のターミナル駅の東側 出口。 2万博 万国博覧会のこ 3 ビル・ヴィオラ Bill Viola 一九五一年~。ニュー ヨークの生まれ。 4マンハッタン Manhat- アメリカ合衆国、 ニューヨーク市の中心を なす区の一つ。 これだけの大きさになると建物に画面が取り付けられているというより、画面の一部 が建物になっていると言ったほうが近いかもしれない。 こんにち 建築物が映像装置と一体化する現状は、おそらく今日の建築の方向性と矛盾するもので はないだろう。設計段階ですでにコンピューター・グラフィックスとして映像化される建 築は、紙に描かれていた時代とは大きく異なる様相をしている。ひと頃透明性の高い建築 が流行したのもつかの間、複雑な構造計算が可能な高速演算装置のおかげで、新しい建築 はますます映像のような自由度をもち、私たちを驚かせる。 そこでは二次元と三次元が相 互に浸透し合い、ある場合には建物そのものを消し去り、流動する映像体としての構築物 擬似群衆の時代 20 タイムズスクエアの夜景 5 5高速演算装置 コンピューターのこと。 問① ここでいう「二次元」 「三次元」とはそれぞれ 何か。

回答募集中 回答数: 0
数学 高校生

(1)の問題あっていますか?

6 例題 4 背理法による証明 第2章 集合と命題 ★★★★ a,b,cは2+B2=c2 を満たす自然数とする。 このとき, a, b の少なくとも一方は偶数であること を背理法を用いて示せ。 [類 岐阜聖徳学園大] 結論を否定して矛盾を導く 考え方 ポイント 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「a, b の少なくとも一方は偶数」の否定は 「α, bがともに奇数」 '+6=c2の両辺について, 4の倍数であるかどうかを調べる。 解答 a b がともに奇数であると仮定する。 ① 結論を否定 ② 右辺を調べる → このとき,a2,62 は奇数であるから,c=d' +62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数を用いてc=2k と表される。 ゆえに,c2=(2k2=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数a, b は自然数m, nを用いて, a=2m-16=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n²-m-n) +2 となり, m²+n-m-nは整数であるから, a' + 62 は4の倍数ではない。 ゆえに,'+b2=c2 において,右辺は4の倍数であるが, 左辺は4の倍数でない から, 矛盾する。 したがって, a,bの少なくとも一方は偶数である。 [終] (1)正の整数xが3の倍数ではないとき,x2を3で割った余りは1であることを示せ。 (2)x,y,z は x2+y'=z' を満たす正の整数とする。 このとき, x, yの少なくとも一方は 3の倍数であることを, 背理法を用いて示せ。 [類 大阪学院大 ] の実 大

解決済み 回答数: 1
数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
1/202