学年

質問の種類

数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
数学 高校生

y=x^2+1とy=√(x-1)はこの式単体で見たら、後者の式はyの値に対してxの値がただ一つ決まるという考えで作っているかどうかの見分けがつきません… だからf(x)の逆関数はf^(-1)(x)と表すのでしょうか?

26 第1章 いろいろな関数 逆関数の求め方 SOUT US RO y=x2+1(x≧0) の逆関数を式で表してみましょう. 元の関数はyがェの で表されていますが、 逆にxをの式で書き表します。「ただ1つ に決まらなければなりません。 r2=y-1 xに何の条件もついていなければ x=±√y-1 となり,xの値が1つに決 まらないのですが,x≧0という条件があることにより,た」 カッ 間に2を 5が出力 つに決まるので、 ます。 x=vy-1 とxの値を1つに決めることができます. これで,「y を入力するとェが出力 される」という式ができました.ただ, 通常の関数は 「入力を x, 出力を で書き表すので,体裁を整えるためにxとyを入れ替えます。 帰国 これが,y=x2+1 の逆関数となります. 1 逆関数と元の関数は同じものの裏表ですから、 元の関数のグラフのと のラベルを付け替えれば,それがそのまま逆関数のグラフになります.「定義 域」と「値域」もそっくりそのままひっくり返ります. =2+1/4y=vz-1 +3 値域: y y≥1 逆関数 定義域: IC x≧1 xとyの関係が 入れ替わる の付 0x IC Oy y 定義域:x≧0 「つを 値域 : y≧0 ただ,もちろんx軸が縦軸, u軸が横軸だと何か 必ずただ=x2+1

解決済み 回答数: 1
1/64