学年

質問の種類

数学 高校生

数Bの統計分野です。 標本平均の平均が母平均に等しくなる理屈は理解しているのですが、この(2)において、標本平均を母平均と同じになるとしているように感じたのですが、どういうことか解説お願いします。

例題 342 標本平均の平均・ 標準偏差 ☆☆☆ (1)ある高校の男子の体重の平均は62kg,標準偏差は9kg である。この 高校の男子 100 人を無作為に選ぶとき,この100 人の体重の平均 X の平 均と標準偏差を求めよ。 1 2 (2)ある母集団から復元抽出された大きさ3の標本の変量が X1, X2, X であるとき、標本平均 X の平均と標準偏差 を求めよ。ただし,X1の確率分布は,右の表 の通りとする。 X1 「-1 1 P 6 11 1-2 0|1|4 12 思考プロセス 母平均 m 母集団 母標準偏差 無作為 抽出 標本 個 公式の利用 E(X) =m 「標本平均の平均E(X) 【標本平均の標準偏差。(X) → 標本平均 X= = X1+X2+…+Xn n Action» 標本平均の平均は、母平均と同じであることを用いよ 解 (1) 母平均m=62,母標準偏差 o = 9, 標本の大きさ n = 100 より E(X)=m=62, o(X) 0 = n 9 9 o(X) = == 100 10 標本の大きさ, 母標準 偏差 6 のとき,標本平均 (2)母平均m, 母標準偏差 o は m=E(x)=(-1)/1/3 +0. +1. +2・ E(X₁²) = (−1)² . 1/3 +02. 6 14 4 1 2 12 1 +22. 1 12 1|2 a = o(X)= √E(X^*)-{E(X,)}=1-(1/2)=1/2 よって E(X)= =m= 2 (X)--- = 3 X の標準偏差は o(X) = - √n 標本の変量を X1,X2,..., Xn とすると =... =E(Xn)=m E(Xi) = E(X2) = 0(X1) = 0(X2) = == =o(Xn) = 0 V (X) = E(X2)-{E(X)} 3 2 3 2 標本の大きさ n=3

未解決 回答数: 0
数学 大学生・専門学校生・社会人

統計分野の二項分布問題の解き方が分かりません どなたか教えていただきたいです!

第2問 ある植物の花の色は、 2 対立遺伝子 (A,a) のメンデル遺伝にしたがい、 “AA” は『赤』、“aa” は 『白』 であるが、 “ Aa" (ヘテロ) は赤や白とは明確に識別できる中 間色 『ピンク』 になる。 いま、この植物の 『ピンク』 の個体を自殖させて得た種子 を発芽させた 6個体を栽培している。このとき、以下の問いに答えなさい。 1) 『白』 が 1つも出ない確率はいくらか? ★P[『白』 が 1 つも出ない ] P[『白』が6個] 2)6個体中、少なくとも1個体は 『赤』 である確率はいくらか? = ★P[少なくとも1個体は『赤』] = 1-P[全てが 『赤』 ] 3) 『ピンク』が2個体以上である確率はいくらか? ★『{2個以上} = { 全体 }-{0個}-{1個}』であるから、 P[『ピンク』が2個体以上] = 4) この植物は、つぼみの時点で 『白』 か 『白でない(赤またはピンク)』 かを判別で きるものとする。 今、 ある2個体について、それらのつぼみからいずれも 『白 でない』ことが判明した。 この時点で、 6個体の全てが 『ピンク』である確率 はいくらか? ★ つぼみの時点で 『白でない』 と判明した個体が 『ピンク』 である条件確率は、 2 P[『ピンク』|『白でない』] - 1/21(11) 一号 3 1 その他の個体については、P[『ピンク』] 2 P[全てが『ピンク』 | 2個体が 『白』 でない] であるから、

回答募集中 回答数: 0
1/4