学年

質問の種類

数学 高校生

これはk≠0でさらにkが0より大きいときと小さいときで場合分けしなくて良いのでしょうか?

これを解いて t= -1±√12-3-2 =-1±√5i 3 3 D<0 すなわち 2 <kのとき, 異なる2つの虚 数解をもつ。 [1], [2] をまとめて +2=1/5i であるからx=-754 3 別解 左辺を展開して整理すると x=-7±√5i 3 k=0のとき k<00k<2のとき 異なる2つの実数解; 1つの実数解; 401 3x2+14x+18=0 これを解いて -7±√72-3.18 x=- 3 2007 k=2のとき 重解; 2kのとき 異なる2つの虚数解 -7±√√5i 3 (3) 両辺に √2+1 を掛けると よって x2+(2+√2)x+ ( √2 + 1) = 0 +(-(2+√2)±√√(2+√2 )² − 4 · 1 · (√2 +1) x= -2-√√2±√2 2 2 ゆえに x=-1,-1-2 別解左辺を因数分解すると (x+1){(√2-1)x+1}= 0 よって x=-1, 1 √2-1 すなわち x=-1, -1-√2 (4) x=- 97 -(-1)+√(−1)-1(6+2√6) 1 =1±√-5-2√6=1±√5+2/6 (3) =1±√(3+2)+2/3.2 i = 1± (√3+√2)i ■■■指針■■ x2の係数が文字であるから, 与えられた方程式 は2次方程式とは限らない。 → (x2の係数)=0と(x2の係数) ≠0で場合分 けして考える。 ...... ①とおく。 kx2+4x+2=0 [1] k=0のとき ①は 4x+2=0 よって,①は1つの実数解 x=-- [2] k≠0のとき 一1/2をも をもつ。 ①は2次方程式であり、 その判別式をDとす D ると =22-k.2=2(2-k) 4 D>0 すなわち k <0,0<k<2のとき,異な る2つの実数解をもつ。 D=0 すなわち k=2のとき, 重解をもつ。 98 x2+ax+a+3=0 ...... ① 30x2ax+4=0 ...... ② とおく。 2次方程式 ① の判別式を D1, 2次方程式 ②の 判別式を D2 とすると D₁=a2-4-1 (a+3)= a²-4a-12 =(a+2Xa-6) -D₂=(-a)²-4.1.4=a²–16 =(a+4)α-4) ① ② がともに虚数解をもつのは, D10 かつ D< 0 が成り立つときである。 D<0 から よって D<0 から (a+2)(a-6) < 0 -2<a<6 ... ③ (a+4) (a-4) < 0 よって --4<a<4 ③と④の共通範囲を求めて -2<a<4 99 x2 +2ax+α+2= 0 ...... ① ④ x2-4x+a+3= 0 ...... ② とおく。 2次方程式 ①の判別式を D1, 2次方程式②の 判別式を D2 とすると D1 4 -=a²−1·(a+2)=a2-a-2=(a+1Xa- D=(-2)-1-(a+3)=1-a (1) ①,② の少なくとも一方が虚数解をもつの D<0 または D2<0が成り立つときである D<0から よって D<0 から (a+1) (a−2) <0 -1<a<2 1-a<0 よって+ α>1 ③と④の範囲を合わせて ...... ③ a>-1 L -401 -1 1 2 a

解決済み 回答数: 1
数学 高校生

解答の表の意味がわからないのでどういうことなのか教えて欲しいです!!

34 第2章 複素数と方程式 基礎問 問題 18 解の判別(Ⅱ) 入試に を言いま α を実数とする. 3つの2次方程式 基礎問」 x2-2ax+1=0 .....① てありま 2-2ax+2a=0 れる 4x2-8ax+8a-3=0 ...③ 科書か 岸に,利 きる力 精講」 のうち,1つだけが虚数解をもち,他の2つは実数解をもつよう なαの値の範囲を求めよ. テーマ 原則 くか? 精講 35 ここで、題意をみたすためには, D1, Dz, D3 のうち, 1つが負で,残り2つが正または0であればよいので 3 -1<a≤0, ≤a<2 参考 この表のかき方は微分法で増減表をかくときと似ています. 注 「実数解をもつ」という表現には気をつけなければなりません。 「異なる2つの実数解」ならば, D>0ですが、 この場合は重解も含ん でいることになるので, D≧0 でなければなりません. 2次方程式の解が実数か虚数かを判別するときには判別式を使いま すが,この設問のように方程式が3つあると不等式を3つかかえる ことになります.しかも,その値は正, 0, 負の3種類の可能性が あるので,連立不等式をそのまま解くとするとかなりメンドウです。 このよう なときには表を使うとわかりやすくなります。 解答 ① ② ③の判別式をそれぞれ D, D, Dsとすると D₁ =α-1=(a+1)(α-1) 4 D2 =a²-2a=a(a-2) 4 D3 =4(4α-8a+3)=4(2a-3)(2a-1) 4 D=0a=±1 D2=0a=0, 2 3 1 D3=0a= 2'2 よって, D1, D2, D3の符号は下表のようになる. a ...-1... 0 D₁ + 0 D2 + D3 + + + + + + 12 0 - 0 + + 0 -- 1 ... 0 + 32 + - ... 2 - - 0 + + 0 + + + + 第2章 問題文の意味を忠実に再現すれば次のようになります. 参考 Di≧0 DI≧0 D<0 D2≧0 または D3 <0 D2 <0 または D3≧0 Dz≥0 D3≧0 このように, 「かつ」 と 「または」 が混在すると, まちがう可能性が かなり高くなります。 + 表にまとめるという解答の手段は非常に有効といえます。 ぜひ, 使 えるようになってください. 1 ポイント 「かつ」 と 「または」 が混在している連立不等式を数直 線を利用して解くと繁雑になるので, 表を利用した方 がわかりやすい 演習問題 18 α を実数とする. 3つの2次方程式 x2-2ax+1=0 x2-4x+α²=0 ......① ......② 2-(a+1)x+α²=0 ...... ③ (s)+(1-1) T のうち, 1つだけが実数解をもち, 他の2つは虚数解をもつような αの値の範囲を求めよ.

解決済み 回答数: 1
数学 高校生

どうして、方程式が実数解を持つようなkの値を求めるために、複素数の相等という解法を用いるのですか?

68 2 重要 例題 43 虚数を係数とする2次方程式 000 の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように の値を定めよ。 また、 その実数解を求めよ。 CHART 解答 SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る。 MOITULO 実物 D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1+i)ω2+(k+i)a+3+3ki = 0 基本 この左辺を a+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, 6=0 ←α, kの連立方程式が得られる。 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i=0 α,kは実数であるから, a2+ka+3,a2+α+3k も実数。 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって a2+ka+3=0 ...... ① α2+α+3k=0 ...... ② ①② から ゆえに よって k=1 または α=3 [1] k=1 のとき ! なぜ (S-)&+n)e=1-e-s x=α EXERCISES A 33 次の2 を代入する。 ◆a+bi = 0 の形に整 (1) 2 (3) 342 次の (1) (3) 35③ (1) ■この断り書きは重B 363 ◆ 複素数の相等。 ◆ α2 を消去。 infk を消去すると α-22-9=0 が得られ 1037 ①,② はともに2+α+3=0 となる。 因数定理 (p.83 基本事項 を利用すれば解くこと きる。 c1 0>(S- これを満たす実数 αは存在しないから,不適。 ◆D=12-4・1・3=-11 03 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 >0 ①:32+3k+3=0 103 ②:32+3+3k=0 [1], [2] から, 求めるんの値は 実数解は k=-4 0> x=3 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のはa,b,c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0の解 ■はx=0, iであり,異なる2つの実数解をもたない (p.81 補足参照)。 H

未解決 回答数: 1
数学 高校生

質問は写真にかいてあります

3a=0 ②が が虚数解をもっ 基本 41 重要例 43 虚数を係数とする 2次方程式 00000 xの方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように, 実数k の値を定めよ。 また、 その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をα とすると (1 + i) o' + (k+i)a+3+3ki = 0 この左辺を a+bi (a, b は実数) の形に変形すれば、 複素数の相等により 0 a=0,b=0 ← α, kの連立方程式が得られる。 基本 38 2章 9 解答 方程式の実数解をα とすると 整理して (1+i)a2+(k+i)a+3+3ki=0 (Q2+ka+3)+(α2+α+3k)i=0 x=α を代入する。 ←a+bi=0 の形に整理。 α, kは実数であるから, a+ka+3, 2 + α+3k も実数。この断り書きは重要。 ①よって 複素数の相等。 a2+ka+3=0 ① どうし Q2+α+3k=0 ...... ② から (k-1)α-3(k-1)=0 ( のか ① 分かりません (k-1)(a-3)=0 k=1 または α=3 [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数αは存在しないから、不適。 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 [[1], [2] から, 求めるkの値は 実数解は k=-4 x=3 INFORMATION ← α を消去。 infk を消去すると 03-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 21 ) を利用すれば解くことがで きる。 6=-47 ←D=12-4:1.3=-110 a²+9+3k38: ②:32+3+3k=0~ ①:32+3k+3=0 a=3~4とでたけど 2次方程式の解と判別式 管に-4はないのか →万かりみん 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a, b, c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0 の解 はx=0, i であり,異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 430 xの方程式 (1+i)x2+(k-i)x-(k-1+2=0 を定め

未解決 回答数: 0
数学 高校生

解の判別で表を書いた後にどの様にして答えまで導いているのでしょうか?解説お願いします🙇‍♂️

34 第2章 複素数と方程式 35 18 解の判別 (Ⅱ) α を実数とする. 3つの2次方程式 x2-2ax+1=0 x2-2ax+2a=0 4x²-8ax+8a-3 = 0 ......① ② のうち,1つだけが虚数解をもち、他の2つは実数解をもつよう なαの値の範囲を求めよ. ここで、題意をみたすためには, D1, Dz, D3 のうち, 1つが負で、残り2つが正または0であればよいので 3 -1<a≤0, ≤a<2 注 「実数解をもつ」という表現には気をつけなければなりません. 「異なる2つの実数解」 ならば, D>0ですが、 この場合は重解も含ん でいることになるので, D≧0 でなければなりません. 参考 問題文の意味を忠実に再現すれば次のようになります。 Di≧0 D≧0 D<0 D2≧0 または D3 <0 D< 0 または D3≧0 D2≧0 D3≧0 このように, 連立不等式では「かつ」 と 「または」 が混在すると, このようなとき, 解答の手段は非常に有効といえます. ぜひ, 使え るようになってください. 精講 2次方程式の解が実数か虚数かを判別するときには判別式を使いま すが,この設問のように方程式が3つあると不等式を3つかかえる ことになります. しかも, その符号は正, 0, 負3種類の可能性が あるので,かなりメンドウな連立不等式を解くことになります. このようなと きには表を使うとわかりやすくなります。 まちがう可能性がかなり高くなります。 解答 ① ② ③の判別式をそれぞれ D1, D2, D3 とすると D1 =α-1=(a+1) (a-1) 4 D2 4 -=a²-2a=a(a-2) D3 =4(4α²-8a+3)=4(2a-3)(2a-1) 4 D=0a=±1 3 1 D3=0a= 2'2 D2=0a=0, 2 よって, D1, D2, D3の符号は下表のようになる. a |-1|... 0 D1 + 0 - D2 + D3 + + + + 0 + + +- |1|2 1 ... - 0 0|| - - + ― - 3-2 + |||0 + 2 + - 0 + + ポイント ... 演習問題 18 + + + 「かつ」 と 「または」 が混在している連立不等式を数直 線を利用して解くと繁雑になるので, 表を利用した方 がわかりやすい αを実数とする. 3つの2次方程式 x2-2ax+1=0 x²-4x+α²=0 ......① ......② x²-(a+1)x+α²=0 ...... ③ のうち, 1つだけが実数解をもち,他の2つは虚数解をもつような αの値の範囲を求めよ.

解決済み 回答数: 1
数学 高校生

(ィ)の答えについて。 k≦1/4または2≦k でも大丈夫ですか? カンマは何を意味しますか?

基本 例題 93 連立不等式の応用 (解の判別) 2次方程式 x2+x+k=0, x2+kx+1=0 がともに実数解をもつようなkの 値の範囲は ?,少なくとも一方が実数解をもつようなkの値の範囲は |である。 CHART O 満たすグラフをかく SOLUTION 2次方程式の解の判別 実数解をもつ D≧0 2つの2次方程式の判別式を順にD1, D2 とすると (ア)ともに実数解をもつ→ D10 かつD2≧0 → Di≧0とD2≧0 の共通範囲 ……! (イ) 少なくとも一方が実数解をもつー D≧0 または D2≧0 → → D≧0とD2≧0 を合わせた範囲 |基本 76,91 3章 ・ ①, x2+kx+1=0 解答 2次方程式 x2+x+k=0. 判別式をそれぞれ D1, D2 とすると D=1-4k, D2=k2-4=(k+2) (-2) (ア)①,②がともに実数解をもつための条件は D1≧0 かつ D2≧ D1≧0 から 1-4000( ②の 2次方程式が2つある 場合,判別式をD1, D2 として区別する。 よって ③ 4 D2≧0 から (k+2)(k-2)≥0 ③④(共通部分) 別解 (イ) ①,②がともに 実数解をもたない条件は ~ よって k≦-2,2≦k... ④ Di < 0 かつ D2 <0 ゆえに k≤-2 をもつための条件は ③と④の共通範囲を求めて (イ) ①,②の少なくとも一方が実数解 D≧0 または D2≧0 ③と④の範囲を合わせて k≤ 11, 2≤k -2 1 2 k k> かつ-2<k<2 4 [s] さいときから 1/4 <k<2 @ う一度図にしてよって, A の範囲以外,す ③U④ (和集合) ① 4b5 k≤½, 2≤k 45 ? ③ ときの2 1 4 2 k ば①②の少なくとも一 方は実数解をもつ。 (S) Jei 11

解決済み 回答数: 1
数学 高校生

数IIについて  「方程式の実数解をαとする」の部分で、置きかえるのはどうしてですか。

x の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように,実数k の値を定めよ。 また, その実数解を求めよ。 基本 38 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る 解答 方程式の実数解をα とすると D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解を α とすると (1+ i) a²+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, b=0 ← α, k の連立方程式が得られる。 ←置きかえるのは どうして? 784) 複数が合されている (1+i)a²+(k+i)a+3+3ki=0 ...... x=α を代入する。 整理して (a²+ka+3)+(a²+a+3k) i=0 ←a+bi=0 の形に整理。 α, k は実数であるから, Q2+ka + 3, a²+α+ 3k も実数。この断り書きは重要。 よって a²+ka+3=0 ◆ 複素数の相等。 a²+a+3k=0 ① ② から ゆえに よって [1] k=1のとき ① ② はともに α2+α+3=0 となる。 これを満たす実数 α は存在しないから、不適。 [2] α=3のとき ①,②はともに 12+3k=0 となる。 ゆえに k=-4 [1], [2] から 求めるkの値は 実数解は (k-1)α-3(k-1)=0 (k-1)(a-3)=0 k=1 または α=3 ONE 2次方程式には適用できな k=-4 x=3 De ← α2 を消去。 inf を消去すると α3-2²-9=0 が得られ, 因数定理 (p.87 基本事項 2 を利用すれば解くことがて きる。 ←D=12-4・1・3=-11< ← ①:32 +3k+3=0 ②:32+3+3k=0 INFORMATION 2次方程式 ax²+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のは a,b,cが実数のときに限る。 例えば,a=i, b=1,c=0 のとき -4ac=1>0 であるが, 方程式 ix2+x=0 の解 異なる2つの実数解をもたない (p.85 STEP UP 参照)。

未解決 回答数: 2
数学 高校生

38.1 これでも大丈夫ですか??

68 ! 基本例題 38 2次方程式の解の判別 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (1) 3x²-5x+3=0 (2) 2x²-(k+2)x+k-1=0 0422 (3) x2+2(k-1)x-k²+4k-3=0 基本事項 O UT GY) TRST T 指針▷2次方程式 ax2+bx+c=0の解の種類は,解を求めなくても、判別式 D の符号だけで 別できる。 * (NET) MAN [1] => 2次方程式の解の判別 D 4 DO異なる2つの実数解 解答 与えられた2次方程式の判別式をDとするとアー (1) D=(-5)²-4・3・3=-11<0 よって異なる2つの虚数解をもつ。 (2) D={-(k+2)}^-4・2(k-1)=k2+4k+4-8(k-1) =k-4k+12=(-2)^+8 ゆえに, すべての実数んについて D>0 よって異なる2つの実数解をもつ。 D<0⇔ 異なる2つの虚数解 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は, (1) と変わらないが, がんの2次式で表され, kの値による場合分けが必要となることがある。 D=0⇔重解 重解はx=- 一D>0」 =2(k²-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2<kのとき この店で異なる2つの実数解 D = 0 すなわち k=1,2のとき 重解 D< 0 すなわち 1 <k<2のとき D=R 異なる2つの虚数解 D<0- 0=([+8)+(1+EV)S+S (3) =(k-1)²-1(−k² +4k-3)=2k²-6k+4+?\)\, {ax² +26²x+c=0 l -ac を利用する。 2 練習 ②38 (1) x23x+1=0 LIHAMU ő 2012 (10) 2a+ SIT (A) D>0- (4) x2-(k-3)x+k²+4=0 k (_){(k+2)}" の部分は, (-1)' =1なので、 (+22 と書いてもよい。 SI+E VALE 00000 D 4 α<βのとき =b²-ac ⇔x<a, Bβ<x <α<βのとき 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 4x²-12x+9= 0 (3) (x-α)(x-B) <0 ⇔a<x<B (S) (5) x²-(k-?)ril k -13x2+12x-?

未解決 回答数: 2
1/15