学年

質問の種類

物理 高校生

(3)でどうして重力mgは含まないんですか??

電界中の荷電粒子の運動 例題 66 右図のような装置が真空中に置かれ ている。 左側のヒーターHから出た質 量m. 電気量-eの電子が, HA間に かけられた加速電圧 V によって加速 され,距離 dだけ隔てて平行に配置さ れた長さの2枚の電極 C D に平行 に入射する。 Cの電位はDよりVだ H Vo くなる。 314 324 ように,C,D と平行に軸、垂直に軸をとり, 電子の初速度は0とし、重力の 高い。 C,D の中央から距離Lだけ離れたところにスクリーンSを置く。上図の 影響は無視する。 (1) A を出た直後の電子の速さはいくらか。 (2) CD間にできる電界の強さEはいくらか。 (3) CD間で,電子のy軸方向の加速度αはいくらか。 (4) CD間の出口での,電子の軸方向の速度vy y 軸方向の変位 y を求めよ。 (5) CD 間を出た後, スクリーンSに衝突するまでの時間はいくらか。 (6)初めからスクリーンに衝突するまでのy軸方向の変位yを求めよ。 ●センサー 105 電圧Vで電子を加速した とき,電子に電界がする仕 事は, W=eV 解答 (1) 加速電圧にされた仕事 eV [J] だけ運動エネルギー 1 2e V が増加するので mvo?evo より,v= m (2)平行極板間の電位差と電界の関係より V V=Ed は12 電子の得た運動エネルギー は, ゆえに,E= d (3) 運動方程式より, mv²=eV 91. センサー 106 極板間では, 電界に平行な方向 →等加速度運動 電界に垂直な方向 ma=eE ゆえに、a= eE eV m md (4)CD間では軸方向には力が加わらないから等速度運動を する。CD 間を通り抜ける時間をとすると,軸方向の運 動より,l=vol, y 軸方向は加速度αの等加速度運動をする ので, eV 1 eVl →等速度運動 v₁ = at₁ = × × md Vo md √2e Vo 1 ev Y₁ 2 at₁₂ = × × 2 2 md (5) CD 間を出ると,電界はなくなるので、x軸方向にも 方向にも力がはたらかず,等速度運動をする。軸方向の運 Vo m VL e d № 2m Vo VI² Ad Vo ■ 原子・分子の世界 動より, L- =vot ゆえに、t= 2L-1 2L-1 m 200 22eVo 2 (6) 電極を出た後の y 軸方向の変位を y2 とすると, VI² VI(2L-1) y=y+y2=y+vyt= + Advo 4d Vo VIL 2d Vo

解決済み 回答数: 1
物理 高校生

(3)がわからないです。なぜ(ア)が答えになるのでしょうか...?(1)の誘導がない場合でも導けるように考え方を教えて頂きたいです。よろしくお願い致します。

B (思考 図1に示すように直交座標系を設定する。 初速度の無視できる電荷g (g>0),質量m の陽子が,y軸上で小さな穴のある電極 a の位置から電極 a b 間の電圧Vでy軸の 正の向きに加速され, z軸に垂直でy軸方 向の長さがしの平板電極c, d (z=±ん) か らなる偏向部に入る。 c, d間にはz軸の 124. 〈電磁場中の荷電粒子の運動〉 x 偏向部 h y E 変位 d 図 1 正の向きに強さEの一様な電場 (電界)が加えられている。これらの装置は真空中にある。 電場は平板電極 c,dにはさまれた領域の外にはもれ出ておらず,ふちの近くでも電極に垂 直であるとし、地磁気および重力の影響は無視できるとする。 〔A〕 電極bの穴を通過した瞬間の陽子の速さvo を,V,g, m を用いて表せ。 〔B〕 その後,陽子は直進し,速さのままで偏向部に入る。 (1)陽子が電極 cに衝突することなく偏向部を出る場合,その瞬間のz 座標 (変位) 21 を Vo,g, m, l,Eを用いて表せ。 (2)Eがある値Eより大きければ陽子は電極cに衝突し,小さければ衝突しない。その値 E を, V, l, んを用いて表せ。 〔C〕 陽子のかわりにα 粒子 (電荷 2g, 質量 4m) を用いて同じV,Eの値で実験を行った ところ,偏向部を出る瞬間の座標 (変位) は 22 であった。 Z2を, 21 を用いて表せ。 [D] E の値をE1 に固定し, 電極 c d にはさまれた領域にx軸の正の向きに磁束密度B (B>0) の一様な磁場 (磁界) を加え, 再び陽子を用いて実験した。 (1) Bをある値 B1 にしたところ,陽子は偏向部を直進し, 偏向部を通過するのに時間 T を要した。 B1 と T1 を, Vo, E1, lを用いてそれぞれ表せ。 (2) Bをある値 B2 (0 <Bz <Bi) にしたところ, 陽子が偏向部を出る直前の座標 (変位) は Z3 (230) であった。このときの陽子の速さを,g,m, V, E1, 23 を用いて表せ。 *(3) Bを 0<B<B, の範囲内で変化させて実験をくり返し, 陽子が偏向部を通過するのに 要する時間を測定した。 このとき, BとTの関係を表すグラフはどのようになるか。 図2の(ア)~(オ)の中から最も適当なものを1つ選べ。 T4 TA (ア) T₁ T4 TA TA (イ) (ウ) (エ) (オ) T1 T1 T1 T₁ 10 B₁ B 0 B₁ B B₁ B 0 B₁ B 0 B₁ B 図2 [東京大〕

解決済み 回答数: 1
物理 高校生

【電界と電位】 +をどこにおいてもどっちも反発してどこ置いても0にならないと思うんですけど、意味がわかりません。 YouTubeとか色んな問題見るとどっちかが−なので、引力によって消えるのがどこかわかるんですけど、プラスで考えたら無理くないですか

電気力線と等電位線 T ・軸上の原点に電気量4gの正の点霊荷 エ=dの位置に気晃4の正 の点電荷がある。クーロンの法則の中 300 40 . 重力の影響に考えたい。 (1) z軸を含む平面内の電気力線の様子を表す図として最も適当なものを,下の① 例題69 真空中で, T ~④の中から選べ。 ただし, 図中の左の黒点は軸の原点 右の黒点はx=dの 電線を表す図として最も適当なものを ① ~ ④ の中から選べ。 OPLE 質量,正の電気量Qをもつ荷電粒子をx軸上のx=2dの点に静かに置いた。 人とd-xになる この電荷がx軸上の無限遠点に行ったときの速さ”を求めよ。 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また、等 x軸上で電界が0になる点はどこか。 0- センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) へ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E=- S (SはEに垂直な面積) りになる点をい 102 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 ●センサー103 真空中の荷電粒子の運動 ·mv²+aV=-F 解答 (1) この場合、 電気力線は正電荷から出て無限遠に行く。 本数は電気量に比例する。 答えは④4 ---O 4g×1 注 実際は三次元なので、 この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② @k (2) 電界の強さは+1Cの電荷が受ける力である。 電界が0 なる点の座標をx(0<x<d) とすると、クーロンの法則よ り. ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 = ko Aq 9 +ko 2d (2d-d) エネルギー保存の法則より, mx0°+QV= V = ko 注x=2dの点では電界の向きが同じなので不適。 (3) 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq (√+V) d ①②より, v= Asu 2 mv² + Qx0 物理 GURES 6kgQ md 2 ゆえに, x= d 3 20 24

解決済み 回答数: 1
物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1
1/2