学年

質問の種類

物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0
数学 高校生

数学の位置ベクトルで写真の赤線のsと(1-s)が何処のことを言ってるのかわからないので教えて下さい

2②2 2直線の交点の位置ベクトル, 線型独立 解答の手がかり AC が線型独立な AB と AD の線型結合で表されているので, AP. AQ, AR を AB と ADを用いて 表す てAB とADで2通りに表して係数比較することを考える。 AR が AB と AD の線型結合で表せれば, AR は AC と AD の線型結合で表せて, CR RD を求めることができるのである。 <解答> 点Pは辺ABを21に内分するから. de AP = AB AR を表すとき, 点 R は, 2直線PQ と CD の交点であることから, 共線条件によっ ことを考える。 点Qは線分 ACの中点であることと AC の条件より, AQ = 1⁄AČ 2 =AB + AD ここで,点Rは直線PQ上にあるので AR=(1-s) AP+sAQ となる実数s が存在する。 また, 点Rは直線 CD 上にもあるので, =(1-s)x 24/AB+s (12/2 AB + AD = (+$$AB+SAĎ0 -s AB + sAD ...... ① AR=(1-t)AC+tAD ...... ② =(1-t) (3AB+2AD) +tAD 3 AB Lind = 3(1-t)AB+(2-t)AD ...... ③ よって, t= 5 + s=3(1-t) かつ s = 2-t 3 6 すなわち, s= 4 13 CR RD=t: (1-t) =4:9 となる実数tが存在する。 ここで、AB とAD は線型独立であるから ①③ より 22 4 13.1=1/350 t= ② P B A D R 2 AD A AB と AD を用いると、 与えられた関係式 AC=3AB +2AD をそのまま用いることがで きる。 AC=3AB +2AD B C AB と AD は線型独立な ので係数比較できる。 ②のtは, AR = AC+tCD により、 直線 CD を C(0), D (1) とする数直線と見た ときの点Rの座標を表す。

回答募集中 回答数: 0
1/2