学年

質問の種類

数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0
数学 高校生

数IIBのベクトルの質問です。なぜ黄色線のようになるんですか?

* . (2) 等比数列{bn}の初項を6,公比をrとすると, b3 = 8, bs=64 であるから D が成り立つ。 ②÷① より であり, は実数であるから 2 br = 8 である. これを①に代入して brl b=2 であるから、 数列{bn}の一般項は r3=8 bn=2.2"-1=2" (n=1,2,3,...) = であり,これと③より である. I= 64 r=2 が成り立つ。 これより bn+2-bn=2"+2-27 =(2'-1).2" である. ここで,数列{an}の初項-38は-38=3・(-13)+1 であ り, 数列{an}の公差は3であるから, 数列 {an}には, 3で割った ときの余りが1である自然数がすべて現れる. ... 3 また, b=2=3.0 +2 より, b, を3で割ったときの余りは 2 であり, b2=4=3・1+1 より, 62 を3で割ったときの余 りは 1である. さらに ( b, を3で割ったときの余り) = k=1 3.2"(n=1,2,3, …) であるから, bm と 6+2 は3で割ったときの余りが等しい.... ⑤ よって, ④, ⑤ より buck = 8(8″ −1) 8-1 8 7 ① -11²₁ Cn=bzn (n=1.2.3....) 2 (nが奇数のとき) 1 (nが偶数のとき) ・・・① ... bncn=b₂b₂n =2"-22 =23n =8" であるから,数列{bnch} は初項 8,公比8の等比数列である. よって - ( 8"-1) [④ ... 等比数列の一般項 初項b, 公比rの等比数列{bn} の一般項は bm=by-1 8 Q14 = 1 であるから, 14 以降に, 3で 割ったときの余りが1である自然数がす べて現れる. 2+2=2".22. て 二つの整数x,yと正の整数mに対し x-yがmの倍数. xとyはmで割ったときの余りが 等しい。 2".22n=2"+2"=23. 23"= (23)"=8". 等比数列の和 初項a,公比r (r≠1), 項数nの 等比数列の和は a(r"-1) r-1

回答募集中 回答数: 0
数学 高校生

線を引いたところの求め方を解説お願いします🙇🏻‍♀️書き込みは無視してください

数学ⅡⅠ 数学B 第3問~ 第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点20) 机の上にカードAとカードBがある。 2枚のカードはいずれも, 表面に数を書い たり消したりすることができる。 最初, カードAには1が, カードBには2が書か れており,これを「初めの状態」 と呼ぶことにする。 この2枚のカードに対し, 花子さんは操作Hを, 太郎さんは操作Tを行う。 一操作】 INSULO AU 操作H: カードAにaが, カードBにbが書かれているとき, カードAは a +26 に書き換え, カードBはものままにする。 次 操作T: カードAにaが, カードBにbが書かれているとき, カードAは a +46 に書き換え, カードBはαに書き換える。 nを0以上の整数とする。 初めの状態から操作Hと操作Tを合計2回行ったとき, カードAに書かれている数をan, カードBに書かれている数をbm とする。 ただし n=0のときはそれぞれ, 初めの状態でカード A, B に書かれている数とする。 す なわち, 4=1,bo=2とする。 たとえば,初めの状態から花子さんが操作Hを1回行うと, カードAには5が, SOSED SHEER カードBには2が書かれるので, a1=5, b=2となる。 また, 初めの状態から太郎さんが操作Tを1回行うと, カードAには9が, カー ドBには1が書かれるので, 19, b=1 となる。 (数学ⅡⅠ・数学B 第4問は次ページに続く。) 数学ⅠⅡⅠI・数学B (1) 初めの状態から花子さんが操作Hのみを行うときを考える。このとき,a=5 であり、a2= ア である。 また一般に an= イ n+ (n=0, 1, 2, ...) である。したがって, 1回目の操作を終えてから回目の操作を終えるまでにカ ードAに書かれていた数 (初めの状態で書かれている数は含まない)の総和を Sn とすると Sn= I n² + オ n (n=1,2,3,…) である。 (数学ⅡI・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!考え方を解説お願いします🙇‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
1/4