学年

質問の種類

数学 高校生

この問題の四角で囲んだ箇所の計算が分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

1 等差数列と等比数列 (39) Think 例題 B1.16 等比数列と図形 **** ¥ Ai(1,α)/l 直線 y=ax (a>0) を l とする.ℓ上の点 A (1, α) からx軸に垂線を下ろし、その足B, からに垂線を下ろし, その足を A2 とする. さらに点Aからx軸に垂線を下ろし、その足 を B2 とする. 以下これを続けて, 線分 A3 B3, A,B, ・・・・・・ を作る. また線分ABの長さを l とおく. (1) l1, l2, l3, ・・は等比数列であることを示せ. Az A3 O (2) li+ l2+ ls+ ...... + ln を a で表せ. (明治学院大改) 「考え方」 解答 y=ax と x軸のなす角を0とおくと, △AOBABABA2B2 A2B2A3co・・・・・・ より 0=∠AOB=∠ABA2=∠B1A2B2=∠A2B2A=...... (1)∠AOB= 0 とおくと, lAa より cost=- OB_ 1 OA₁ √a²+1 △ABA2△A,OB より, ∠ABA2= ∠AOB=0 したがって, A2B=AB cost=licoso 同様に, l2=A2B2=A2BICOSA B3 B2 L B₁ x A (1, α) より OB= AB=αであるから, OA₁ = √√a²+12 △ABA2とAOB ∠BA1 A2=∠OAB ( ∠AAB=∠ABO △ABIAA OB1 よって, ∠ABA2=∠AOB AAOBAA₁B₁A △BA2B2 の相似」 1 1.T =licoso.cost=licos'0= a²+1 なので, 1 同様にして, ln+1= -lm が得られる. '+1 よって, l1, l2, ls, ...... は, 初項 α. 公比 の等比数列である. +1 (2)0 より, 1 a²+1 a²+1 li+lz+ls+... + ln a{1-(a²+1)}_a{1-(a²+1)"} a°+1 (a+1)"-1_ (ω°+1)"-1 キ1 なので、 A2B2 を A B で表す できる. 1 初項 α,公比- a²+1 数列の第n項までの a a²+1 100% a a(a+1)-1 (a²+1)" dear Focus 図形のくり返し相似条件に着目し、隣接項の関係式を導 練習 直線 y=ax (a>0) をℓとする. l 上の点A(2, 2a) からy軸に垂線を 1.16 その足 B, からℓに垂線を下ろし、その足をAとするさらに点Aから *** 垂線を下ろし、 その足をB2 とする. 以下これを続けて, 線分A3B3, Al * a

解決済み 回答数: 1
数学 高校生

[1]の、a5=1、b5=1とありますが、 どうしてr=1を代入しただけでa2やa3〜〜ではなく、 a5、b5となっているかを教えてください!!🙇‍♀️

372 重要 例題 14 等差数列と等比数列の共通項 00000 〔神戸薬大] 初項1の等差数列{an} と初項1の等比数列{bn} が as=b3, a=ba, st を満たすとき,a2, by の値を求めよ。 CHART & SOLUTION 等差数列と等比数列の共通項 条件から、初項、公差d, 公比の関係式を導く 基本1 数列{an}, {bm} ともに初項は与えられているから,{an} の公差d,{6}の公比が の関係式 を導く。 導いた関係式には2やが含まれるからを消去するのは困難である。 まずは dを消去してrを求めよう。 解答 数列 {an} の公差をd, 数列{bm} の公比をとすると an=1+(n-1)d, bn=1zn-1 ① よって ゆえに よって ag=bs から 1+2d=2 a4 = b4 から ②③から 1+3d=3 3(2-1)=2(3-1) 2-32+1=0 (r-1)(2r2-r-1)=0 (r-1)2(2r+1)=0 1 したがって r=1, *S 未 dを消去する方針。 ②から6d=3(-1) ③から6d=2(-1) 22-r-1 =(x-1)(2x+1) 2 [1] r=1 のとき ② から d = 0 このとき,① から αs=1, bs=1 ? 240.1 [2]=-1/2 のとき ② から d=-- 元利合計Sは、 これは, α5≠bs を満たさないから、不適。 3 8 このとき ①から 8 a=1+(5-1)(-3)--. -(-)-16 b5 = (1)円 和で すべてのnに対して an=1,6n=1 -αn=1+(n-1)( 2 \n-1 これは, as≠65 を満たしている。 [1], [2] から, 求める az, b2 の値は a2=0, b2= b2=-- 1 2 x10.1++2 10.110.1

解決済み 回答数: 1
数学 高校生

下線部において、dが省略される式はどのように出したのか過程を教えてください!! 分かる方ぜひぜひお願いします🙇‍♀️

372 要 例題 14 等差数列と等比数列の共通項 初項1の等差数列{an} と初項1の等比数列{bn} が a3=bs, a=ba, を満たすとき αz, b2 の値を求めよ。 CHART & SOLUTION 等差数列と等比数列の共通項 00000 ash [神戸薬大] 基本 1.9 条件から、初項、公差 d, 公比rの関係式を導く 数列 {an}, {bm} ともに初項は与えられているから, {an} の公差d,{6}の公比rの関係式 を導く。導いた関係式にはやが含まれるからを消去するのは困難である。まずは dを消去してrを求めよう。 解答 10.1X001136 数列{a} の公差をd, 数列 {bn} の公比をとすると an=1+(n-1)d, bn=1.yn-1 ・① ag=bg から 1+2d=2 a4=64 から 1+3d=3 ③ ② ③ から 3(2-1)=2(z3-1) よって 23-3r2+1=0 ゆえに (r-1)(2r2-r-1)=0 よって (n-1)2(2x+1)=0 したがって 1 r=1, 2 末 [1] r=1のとき ② から d=0 5000+ このとき, ①から α5=1,65=1 x10.J これは, α5≠bsを満たさないから、不適。 [2]=-1/2 のとき ② から d=- 3 ・円 8 このとき, ①から (円) 3 as=1+(5-1)(-1/2)=-1/2,65 -(-1)-16 = 2' 2 これは, as≠bs を満たしている。 [1], [2] から, 求める as, by の値は42=2, b2= 62 1 8' 2 x engl dを消去する方針。 ②からd=3 ( ③から6d=2 ← 22-r-1 =(r-1)(2r+1) すべてのに対し an=1,6=1 ←an=1+(n-1)(

解決済み 回答数: 1
1/7