学年

質問の種類

数学 高校生

この問題のActionのところに書いてある、無理関数を含む不定形の極限は、分子または分母を有理化せよというのがなぜなのかが分かりません。どのようなメリットがあるのでしょうか?回答よろしくお願いします。

例題 52 極限と保数決 次の等式が成り立つように、定数a, bの値を定めよ。立た lim{√x2-2-(ax+b)}=0 8+xp+5 x→∞ 8-4 候補を絞り込む (2) a > 0 のとき a = 0 のとき →b ∞∞の不定形 与えられた等式を は-6台)] 満たすのは, この場合のみ。 8-1 ∞+∞∞ 思考プロセス la < 0 のとき α > 0 で考える。 Action» 無理関数を含む不定形の極限は,分子または分母を有理化せよ 解 a≧0 のとき,与えられた極限は∞に発散するからa>0 lim√x2 -2 = ∞, √x2-2-(ax + b) 0 = (x) m {√x²-2-(ax+b)}{√x-2+(ax+b)} √x2-2+(ax+b) -0-0-(1-a²)x2-2abx-(2+b²) == √x2 -2 +(ax+b) x→∞ a < 0 のとき mi lim{-(ax + b)}=∞ x→∞ a = 0 のとき lim{-(ax + b)} = -6 x→∞ TA よって, a≧0 のとき (与式)。 2+62 + (1-α2)x-2ab x 010 2 b 1- +a+ 2 x" x よってx→∞ のとき,これが収束する条件は 1-α2 = 0 a>0より α = 1 であり,このときの極限値は (+x+im{√x²-2-(ax+b)} lim{vx2-2-(ax+b)}=∞ 分子を有理化する。 x→∞より,x > 0 と考 えて、分母分子を x で 割る。 (S) SIS 8 分母のみの極限値は lim 2 2+62 81X x2 +a+ - 26 x x ・26 =1+α lim -b 80+x 2 b 2 1 +1+ 2 であるが, a>0より 0 にならない。 x x ゆえに したがって b=0 a=1,6=0

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

この問題、判別式だけでできないのはなんでですか??

Think 例題 35 無理関数のグラフと直線 **** 関数 y=√2x-1 ……………① のグラフと直線 y=x+k •••••• ② との共有 点の個数を調べよ. ただし, kは実数の定数とする. 考え方 まず,無理関数 y=√2x-1 のグラフをかく. 次に,k の変化に応じて, 直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば, 共有点の個数の変化がつかみやすくなる. ① 曲線 ①と直線 ②が接するときのkの値 y=√2x-1 ...固定 y=x+k 変動 第2章 34 ②] 直線 ②が曲線 ①の端点 (20) を通るときのん の値 つまり、 ①を境として共有点の個数が 0個 1個 2個 ②を境として共有点の個数が 2個→1個 y=v2x-1 とそれぞれ変化する. 解答 ①のグラフは右の図のように なる. y4 まず①②のグラフが接す るときのんの値を求める. ①②より, √2x-1=x+k 両辺を2乗すると, Ø 1 1 x 2x-1=(x+k)? より, ①のグラフと数本の適 当な ② のグラフをかく. y=/20 1/2(x-1)より。 ①のグラフは y=√2x のグラフを 2 x2+2(k-1)x+k+1= 0 x 軸方向に だけ平行 移動したもの この方程式の判別式をDとすると, 重解をもつから, D 1=(k-1)-(k+1)=-2k=0より, k=0 4 次に,直線 ②が点 (20) を通るときのkの値を求める。 10/12th より k=-1/12/ 0= |接する重解をもつ ⇔D=0 ②にx=12, y=0を 代入する. 以上より, ① ② のグラフの共有点の個数は, k>0 のとき, グラフで確認する. 0個 kの値の減少により, <-12, k=0 のとき, 1個 ②は下方に平行移動す る. 1/2sk<0 のとき 2個 Focus 共有点の個数はグラフが接する場合をまず考える 練習 35 関数 y= 2x+3 +3 のグラフと直線 y=ax +2 との共有点の個数を調べよ. ** ただし, αは実数の定数とする. p.994

未解決 回答数: 0
1/13