学年

質問の種類

化学 高校生

電離平衡の質問です。 解説にはH+やOH-の増加分を無視しないと三次方程式を解くことになって困難になると書いてあります。 確かにそうなのですがだからといってどうして無視してよくなるのでしょうか。 水の電離による寄与分を無視できる程度のCだと前提にする、というのも問題に書いて... 続きを読む

「入試攻略 への必須問題 酢酸の電離定数を Ka 〔mol/L] アンモニアの電離定数を Ko [mol/L] とし,次の(1), (2) に答えよ。 ただし, (1), (2) ともに電離度αは1より十分 に小さいとする。 (\fom (1) C [mol/L]の酢酸水溶液の [H+] [mol/L] を求めよ。 (2) C[mol/L] のアンモニア水の [OH] [mol/L] を求めよ。 解説 H2Oの電離によるH+ や OH-の増加分を無視しないと, p.341 のような3次 方程式を解くことになり,解を得るのが困難なので,水の電離による寄与分を無 視できる程度のCの値だということを前提にして解いてください。 (1) (2) CH3COOH CH3COO + H+ [AH][NH3 + H2O 電離前 C1IX [HQ]+ 0 NH+ + OH $A]+ C 変化量 -Ca +Ca +Ca 大量 変化量 Ca -Ca 0 0 +Ca +Ca 電離後C(1-α) Ca Ca 電離後C(1-α) 大量 Ca Ca [CH3COO-] [H+] Ka= [NH4+][OH] [CH3COOH] Kb= [NH3] SPS Ca Ca Ca-Ca =← (1-a) (1-α) Ca² .4±0 Ca² th = 1-a 1-ax α ≪1 ならば, 1-α≒1 とできるから, Ka=CQ2A α ≪1 ならば, 1-α≒1 とできるから, Kb≒C2 Ka よって, α= よって, α= 「Kb √ C C [H+]=√CKa これを [H+] = Cα に代入すると, J これを[OH]=Cに代入すると, [OH]=CK 答え (1) [+]=√CKa (2)[OH]=√CK 週一般的にはα= Ka の値が 0.05 以下なら, 1-α≒1 としてかまいません。 Ka >0.05 のときは Ca2 1-a =Ka を解いて, αを求め直します。

回答募集中 回答数: 0
数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
数学 高校生

解放2です。

基本例 点がF(3,0), F'(-3, 0)で点A(-4, 0) を通る楕円の方程式を求めよ。 p.585 基本事項 重要 149、 解法 1. 焦点の条件に注目。2つの焦点はx軸上にあり、かつ原点に関して対称であ あるから求める楕円の方程式は 1 (40) とおける。 焦点や長軸短軸についての条件に注目し, a, bの方程式を解く。 解法2. 楕円上の点をP(x, y) として、 楕円の定義 [PF+PF' = (一定)」に従い, 点 の軌跡を導く方針で求める。 |解法 1. 2点F(30) F'(-3, 0) が焦点であるから, 求 1焦点は2点 める楕円の方程式は 4-2 + 92 b2 ここで a2-b2=32 =1 (a>b>0) とおける。 A (-4, 0) は長軸の端点である から a=|-4|=4 y √7 (√a²-b², 0). (-√a²-6ª, 0) 焦点のx座標に注目。 y座標が0であるから, 楕円の頂点。 a b よって62=q-32=42-9=7 ゆえに、求める楕円の方程式は F' -3 0 3 4x ここではの値を求め なくても解決する。 x2y2 長軸 17 va2-62 =1 7 すなわち +2 =1 16 7 PがAに一致するとき? 解法 2. 楕円上の任意の点をP(x, y) とすると PF+PF'=AF+AF'=|3-(-4)|+|-3-(-4)|=8 <F, F′, A はx軸上の よって ゆえに √(x-3)2+y2+√(x+3)+y2=8 <PF+PF'=8 √(x-3)2+y2=8-√(x+3)2+y2 両辺を平方して整理すると 16√(x+3)2+y2=12x+64 両辺を4で割って, 更に平方すると 整理して 16(x2+6x+9+y2)=9x2+96x+256 7x2+16y2=112 よって、求める楕円の方程式は 16 7=1 ここでがなくな 次のような楕円の方程式を求めよ。 9 (1) 2点(20)(20) 焦点とし、この2点からの距離の和が6 (2)楕円 x2y2 3 5 =1と焦点が一致し、 短軸の長さが4 (3)長軸がx軸上,短軸がy軸上にあり、2点(-2.0) (1,2)を通る。 p.603

回答募集中 回答数: 0
1/17