学年

質問の種類

数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
数学 高校生

(1)の-3=a+bは係数比較法で解いていますか?

例題 3 次の等式がェについての恒等式となるものとする。 このとき, a,b, c. d の値をそれぞれ求めよ。 -3.x +5 a b (1) (x+1)(x+5) (2) x2 +3.x+4=a(x-1)(x-2)+6(x-1)+c + x+1 x+5 (3)x3+4.x2+2x+1=a(x-1)+6(x-1)2+c(x-1)+d ポイント (1) 恒等式は, まったく同じ式ということ。 本間は、 右辺を通分して同じ分母 にしたときに、分子がまったく同じ式になる! と考えます。 (2)x1,x-2という因数があるので, 数値代入法。 (3) x-1が3回出てくるので, 置き換えます。 =1.2を代入 -3x +5 解答 (1) (x+1)(x+5) であるから, a(x+5)+6(x+1) ・右辺を通した (x+1)(x+5) -3x+5=a(x+5)+6(x+1) 分子が恒等式になれは、全体も恒等式 が恒等式。 係数を比較して ←上の式が -3=a+b これを 5 =5a+6 解いて (2)x=120を代入して 恒等式なので a=2,6=-5 ポイント x-1, x-2の因数があるので x=1,2を代入する(計算がラク) x=0も計算がラク 8=c これを 14 = 6+c a=1, 6=6,c=8 解いて 4=2a-b+c (3)t=x-1と置き換えた たとえば、 恒等式 3x+5=3x+5に x=t+1を代入した 3(t+1)+5=3(t+ 1) + 5 はまた恒等式 (まったく同じ式) (t + 1) + 4(t + 1) + 2 (t + 1) + 1 = at + bt + ct +d も恒等式。 ここで, (ポイントを見よ) (左辺) = (t+3t + 3t + 1) + 4 (t2 + 2t + 1) + (2t + 2) + 1 =t + 7t+ 13t + 8 係数をくらべて a=1,b=7,c=13, d=8 ポイント パターン3 恒等式

解決済み 回答数: 2
数学 高校生

例題74.2 恒等式という記述がないですがこれでも問題ないですよね? (3枚目を確認してほしいです。2枚目はそこまでの導入も一応載せただけであり、おそらく記述に問題はありません。)

よ。 本 65 基本例 74 第2次導関数と等式 1) y = log(1+cosx) のとき,等式 y"+2eY =0 を証明せよ。 131 00000 自 (2)y=exsinx に対して, y”=ay+by' となるような実数の定数a,bの値を求 めよ。 [(1) 信州大, (2) 駒澤大]基本 73 指針第2次関数y”を求めるには、まず導関数を求める。また,(1),(2)の等式はとも にの恒等式である。 (1)y" を求めて証明したい式の左辺に代入する。 またe-xで表すには,等式 elogppを利用する。 (2)y', y” を求めて与式に代入し, 数値代入法を用いる。 なお, 係数比較法を利用す → ることもできる。 ・解答編 p.94 の検討 参照。 (1)y=2log(1+cosx) であるから 2sinx 1+cosx <logM = klogM なお, -1≦cosx≦1と (真数) > 0 から _ 2{cosx(1+cosx)=sinx(-sinx)} | 1+cosx>0 解答 y' =2• (1+cosx) こでは 1+cosx よって y"=- しょう x2+3), -12x)' x)', in 2x) (1+cosx) 2(1+cosx) _ _ _ 2 ( Nhật (1+cosx) [ == 1+cosx また, Y = log(1+cosx) であるからex=1+cosx 2 ゆえに 2e2 2 2 = y 1+cosx よって y"+2e-1/2=- 2 2 + =0 1+cosx 1+cosx x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 3章 1 高次導関数、関数のいろいろな表し方と導関数 ga), gay anx cos2y g(x)をxで ・もの。 v' (2) y=2e² sinx+ex cos x=e²x (2 sinx+cosx) y=2e(2sinx+cosx)+e (2cosx−sinx) =e2x(3sinx+4cosx) ...... ① ゆえにay+by=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y" =ay+by' に ① ② を代入して 2x (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} 4=b ③はxの恒等式であるから, x=0を代入して π を代入して また,x=2 これを解いて このとき って 3e"=e" (a+26) a=-5,6=4 (③の右辺) 4(e2)(2sinx+cosx) +ex(2sinx+cosx) 参考 (2) のy"=ay+by' のように、未知の関数の 導関数を含む等式を微分 方程式という(詳しくは p.353 参照)。 ③が恒等式 ③に x=0, を代入しても 成り立つ。 =e2x{(-5+2.4)sinx+4cosx)=(③の左辺) 逆の確認。 a=-5,b=4 [S][]

解決済み 回答数: 1
1/10