学年

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 高校生

マイナス側から極限をとる時ってマイナス側だからといってxが奇数乗のときにマイナスつけるって訳では無いんですか?この辺苦手でよく分かりません。。

基礎問 59 微分可能性 関数 f(x) を次のように定める ( logx (x≥1) 0 /= (1)(2) f(x)={ IC x2+ax+b (x<1) このとき,関数 f(x) が =1で微分可能であるように, a, b を定め log(1+h) よ. ただし, lim -=1 は用いてよい 0+4 h 精講 f(x)が x=a で微分可能とは,f'(α) が存在することを意味しま すから,ここではf'(1) が存在することを示します. 定義によると lim f(1+h)− f(1). h→0ah 1=f'(1) ですが,1+hと1の大 小,すなわち, h>0 とん<0 のときでf(1+h) の式が異なるので, ん → + 0, h0 の2つの場合を考え, f(1+h)-f(1) f(1+h)-f(1) lim =lim 52 左側極限, ん→+0 h h➡-0 h 右側極限 が成りたてば mie lim 1:00 ƒ(1+h)− ƒ(1) -mil が存在する ん→0 1117 ことになり、目標達成です. これだけでα, bの値は求 められますが、ポイントにある性質と, 連続の定義を利 使用してαと6の式を1つ用意しておくと, ラクに a, b の値を求められます。 53 解答 まず, x=1で連続だから, limf(x)=f(1) が成りたつ. .. lim (x2+ax+b)=0 x→1-0 よって, 1+α+6=0 ...① このとき, (() x→1 log1=0 f(1+h)-f(1) lim ん→+0 h = lim h+ohl 1/log(1+h) 1+h (1)

解決済み 回答数: 2
数学 高校生

微分係数が存在するかしないかって 右側極限の微分と左側極限の微分が合うか合わないかのみによるという理解でよいですか?

連続で [+] (②) 連続 T 分 ■数 60 関数の連続性と微分可能性 /関数f(x)=x^2/x-2|はx=2において連続であるか、 微分可能であるかを調べ p.106 基本事項 62 検討 [例題] f(x)がx=αで連続limf(x)=f(α) が成り立つ f(x) が x=αで微分可能微分係数 lima+h)-S(α) h オー lim f(x) X 2+0 これらの極限について調べる。 f(x)はx=2の前後で式が異なるから、例えば連続性については、右側極限 20, 左側極限x2-0 を考え,それらが一致するかどうかを調べる。 =limx2(x-2)=0 x-240 lim f(x) x-2-0 =lim{-x2(x-2)}=0 x2-0 また, f(2)=0 であるから lim f(x)=f(2) X-2 よって, f(x)はx=2で連続である。 次に = lim h+0 ƒ(2+h)-f(2) h lim h-0 f(2+h)-f(2) h =lim h→+0 h→+0 =lim(2+h)=4 ya lim h-0 (2+h)³h-0 h (2+h)²(−h)-0 h =lim{-(2+h)"}=-4 h-0 h→+0とん → 0 のときの極限値が異なるから, f' (2) は存在しない。 すなわち, f(x)はx=2で微分可能 ではない。 微分可能連続の利用 f(x)がx=αで微分可能x=α で連続 y=f(x) (2) f(x)= X 0 107 00000 F p.97 基本事項■ が成り立つ。 よって、上の例題のような問題では,微分可能性から 先に調べてもよい(「微分可能」がわかれば、極限を調べなくても 「連続である」という結論を出すことができる)。 また、⑩の対偶「f(x)がx=4で連続でない⇒xaで微分 「可能でない」 も成り立つ。 x 1+2 + が存在する。 4A= を用いて、絶対値をはず A (A20) -A (A<0) ◄f(2+h)-(2+h)²|h|| ん→ +0のとき >0 ん→-0のとき <0 に注意して、 絶対値をは ずす。 練習 次の関数は, x=0 において連続であるか, 微分可能であるかを調べよ。 260 (x=0) (1) f(x)=|x|sinx (x=0) 微分可能 [(1) 類 島根大〕 p.115 EX 48 3 章

回答募集中 回答数: 0
数学 高校生

赤線で囲ったところ 三角関数の+とか-てどうやって調べるんですか? 単位円を書いて調べる感じですか?

[類 中部大] 62 基本事項 参照)。 確認。 * 0 する。 >0 10 解答 基本例 次の関数の極値を求めよ。 (1)y=(x-3)e-x (3) y=x√√√x+3 指針 例題 94 関数の極値(1)….. 基本 (1) y'=2xe^x+(x2-3)(-e-x)=-(x+1)(x-3)e-x y'=0 とすると x=-1,3 関数の極値を求めるには, 次の手順で 増減表をかいて判断する。 ① 定義域,微分可能性を確認する。 明らかな場合は省略してよい。 ② 導関数yを求め, 方程式y'=0 の実数解を求める。 y'=0となるxの値やy が存在しないxの値の前後でy'の符号の変化を調べ, 増減表を作り, 極値を求める。 CHART 関数の極値 増減表は右のようにな る。よって x=3で極大値 x=-1で極小値-2e y y' y sinx=0から =2sinx(2cosx-1) x 0 6 1 2cosx-1=0から x= π 5 3' 3 よって, 増減表は次のようになる。 + (2) y=2cosx-cos 2x (0≦x≦2π) (2)y=-2sinx+2sin2x=-2sinx +4sinxcosx © find ( CHỐ の範囲で解く x=0, π, 2π π 3 0 極大 3 ゆえに x = 12/22 23232 TC 5 9 3² 増減表の作成 の符号を調べる x : ゆえに, x>0 では常に y'>0 V² I ... π 極小 -3 : -1 0 + 極小 -2e π 5 3 + R > p.162, 163 基本事項 2 3 基本 93 0 極大 3 0 極大 6 3 > 2π 3 で極大値 ; x = で極小値-3 (3)定義域は3である。 x≧0のとき、y=x√x+3であるから,x>0 では 3(x+2) y=√x +3 + 2√x+3 2√x+3 00 -√3 |(1) 定義域は実数全体であ り定義域全体で微分可 能。 yA |0| 6 √√3 3 -3 -2e 2倍角の公式 sin2x=2sin xcosx x y'の符号の決め方につ いては, 次ページ検討 を参照。 f(x) f(0) 165 (3) f(x)=|x|√x+3 とす ると lim x→±0 x-0 =±√3 (複号同順) f(x)-f(-3) lim x-3+0 x-(-3) -=8 よって, f(x)はx=0, x=-3で微分可能でな いが, x=0では極小と する 4章 44 関数の値の変化、最大・最小

解決済み 回答数: 1
1/7