学年

質問の種類

数学 高校生

最後のXからxとかの変換についてなんですけど、どうやってるのか分からないです。

207 重要 例題 130点(x+y, xy) の動く領域 実数x,yx2+y2 ≦1 を満たしながら変わるとき, 点(x+y, xy) の動く領域 を図示せよ。 指針 ①条件式x2+y2≦1 を X, Yで表す。 x+y=X, xy=Yとおいて,X,Yの関係式を導けばよい。 x2+y²=(x+y)^2xy を使うと X2-2Y ≦1 しかし, これだけでは誤り! 2 重要 129 x, y が実数として保証されるような X, Yの条件を求める。 → x,yは2次方程式(x+y)t+xy=0 すなわち f-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-40 実数条件に注意 解答 X=x+y, Y=xy とおく。 x2+y2≦1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 X2 したがって Y≥ ① 2 2 また,x, yは2次方程式2-(x+y)t+xy=0 すなわち 3章 1 不等式の表す ると ここで よって, X2-4Y0 から t-Xt+Y=0の2つの実数解であるから, 判別式をDとす D≧0 D=(-X)-4・1・Y=X2-4Y 2数 α β に対して p=a+β,g=αβ とすると, a, βを 解とする2次方程 式の1つは x²-px+q=0 X2 Y≤ ...... ② yA x21 4 y2 2 X2 ①②から 2 y= 変数を x, y におき換えて 14 x21 2 2 12 1 2 -√2 したがって、 求める領域は、 右の図の 斜線部分。ただし、 境界線を含む。 12 0. x² 1 x2 とす 2 2 4 るとx=±√2 昌樹 実数条件(上の指針の②)が必要な理由 検討 x+y=X, xy=Yが実数であったとしても, それが x2+y2≦1 を満たす虚数x,yに対応し + 12-12 のときx+y=1(実 た X,Yの値という可能性がある。例えばx=1/12/1/22y=1/12/21/2の 数), xy=1/12 (実数)で,x+y's1 を満たすがx,yは虚数である。このような(x,y) を 除外するために 実数条件を考えているのである。

解決済み 回答数: 1
数学 高校生

次の問題で実数条件の説明のところで青線からよってのところで何故よってというふうに言えるのかがよくわからないのですがどなたか解説お願いします🙇‍♂️

X2-4Y0 より 例題 130 条件を満たす点の存在範囲 Ys-X2 4 ★★★★ 実数x, y が x+y≤ 8 を満たしながら変化するとき, 次の点の存在範 囲を図示せよ。 ② ④ より 点 Q の存在範囲は y4 1 y≥ x2 4 2 1 (1) P(x+y, x-y) S x² (2) Q(x+y, xy) -4 0 4 x https://www.youtube.com/watch?v=- 思考プロセス 2曲線 y=1/2x-4.y=1/21 x² x²-4= (1) 問題の言い換え Z1I7XgAK_c 2 点(x, y) が領域x +y'≦8内を動くとき, 点P(x+y, x-y) はどのような図形を動くか。 ① 軌跡を求める点を (X, Y) とおく ← 軌跡の問題 の共有点は (-4, 4), (4, 4) であるから, 右の図の斜線 部分。ただし,境界線を含む。 1 x=4 より x=16 4 よって X = x +y, Y=x-yとおく。 (x,y)=(4, 4), (-4, 4) 2 与えられた条件を X, Y の式で表す。 Point 実数条件 条件xty S8 → X, Yの式で表す (2) 1 (2) では実数条件が必要であるが, (1) では必要ない。 この違いを考えてみよう。 (2)点Q(x+y, xy) の存在範囲に点 (X, Y) が含まれていたとする。 このときのx, を X, Y を用いて表してみる。 X = x+y, Y =xy とおく。 ② 条件+y S8 →X,Yの式で表す 条件はこれだけでは不十分である。 X, Yはすべての実数をとるとは限らない。 例 X = x + y = 1, Y =xy = 1 となる x, y は 2次方程式 e-t+1=0の2解であるが, この解は実数ではない。 文字を置き換えると 範囲が変わる。 ◆ 解と係数の関係より ⇒ピーXt+Y = 0 が実数解をもつ範囲しか, X, Y は動かない。 Action》 x+y= X, xy = Y とおくときは, x, y の実数条件を考えよ (1) X = x +y, Y = x-y とおくと (X = x+y... ① とすると, ① より y=X-x Y = xy ...② これを②に代入すると よって, ③ の判別式 D = X-4Y ≧ 0 のとき x= Y=x(X-x) すなわち ポー Xx + Y = 0 X±√X2-4Y 2 ... ③ (D<0 のときは,実数x, y は存在しない。) この下線部が, 解答の実数条件の表す意味である。 実際, X = 0, Y = 4 となる実数x, y が存在するか考えると x= X+Y 2 y= X-Y 2 点Pの座標を(X, Y) と おく。 (X = x+y=0 のとき ly=xy=4 fx=2i (x = -2i または lv=-2i ly=2i よって, 実数x, y が存在しないから, X = 0, Y = 4 は不適である。 fx,yを消去するために, xyについて解く。 x+y≦8 より (+)+(X) ≤8 一方, (1) P(x+y, x-y) の存在範囲に点 (X, Y) が含まれていたとする。 (X=x+y... ① とすると よって X+Y 16 lY=x-y... ② X+Y したがって, 点Pの存在範囲は X-Y (①+②)÷2 より x= (①-②)÷2 より y= 2 x + y ≤ 16 であり、 右の図の斜線部分。 ただ 0 2 がどのような実数をとっても, 実数x, y は存在する。 「とから, (1) では, 実数条件を考える必要はないのである。 し、 境界線を含む。 4 (2) X = x+y, Y = xy ... ① とおく。 x+y ≦ 8 より (x+y)-2xy≦8 ① を代入すると X2-2Y ≤8 1 すなわち Y≧ X2-4 ...② 例題! 38 とすると D=(-X)-4・1・Y = X-4Y ここで, x, yは2次方程式 - Xt+Y=0 ... ③ の解 であり, x, yが実数であることから, ③の判別式をD D≧0 x+y, xy がともに実数 であってもx,yが実数 とは限らないため, x, y の実数条件を考える。 Point 参照。 練習 130 実数x, y が x +y ≦ 4 を満たしながら変化するとき, 点 (x+y, xy) の存

解決済み 回答数: 1
数学 高校生

ここの問題のtが出てくるところから,何故急にtが出てくるのかが分かりません,教えてください

重要 例 (x+y, xy) の動く領域 20 0000 実数x,yx2+y2≦1 を満たしながら変わるとき, 点(x+y, xy) の動く領域 | を図示せよ。 指針 x+y=X, xy=Yとおいて, X, Yの関係式を導けばよい。 ①条件式x2+y≦1 を X,Yで表す。 →x2+y2=(x+y)²-2xy を使うと しかし、これだけでは誤り! DET X2-2Y≦1 ② x, y が実数として保証されるような X, Yの条件を求める → x, 重要 129 x, yは2次方程式2-(x+y)t+xy=0 すなわち 2-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-4Y0 ① 実数条件に注意 X=x+y, Y =xy とおく。 解答 x+y=1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 X2 したがって Y≥ ...... ① ると ここで また,x,yは2次方程式2-(x+y)t+xy=0 すなわち2数α,Bに対して -Xt+Y=0の2つの実数解であるから, 判別式をDとす D≧0 D=(-X)-4・1・Y=X2-4Y p=α+B,g=aβ とすると,α,Bを 解とする2次方程 よって,X2-4Y0からでき 式の1つは x-px+g=0 ya 1 4 y= 2 2 2 AST X2 1 日本 ①②から 2 4 y= 24 検討 変数を x, yにおき換えて 11/2² - 1/1 Sy ≤ 11214 - 2 4 したがって、求める領域は、右の図の 斜線部分。ただし、境界線を含む。 実数条件(上の指針の)が必要な理由 -√2 1-2 12 0 √2 x x2 2 1/2とす 4 x+y=X, xy=Yが実数であったとしても, それが x2 +y'≦1 を満たす虚数x,yに対応し 1/12/+/12/i.y=1/2-2/21のときx+y=1 (実 たX, Yの値という可能性がある。 例えば, x=- 数), xy= 2, (実数) で, x2+y'≦1 を満たすがx, yは虚数である。 このような(x, y) を 除外するために 実数条件を考えているのである。

解決済み 回答数: 1
数学 高校生

(2)が分かりません。 答えの赤線部(2)6行目から意味が分かりません。 教えてください! よろしくお願いします🙏

総合 (1) 実数x, yが(x-3)+(y-3)=8を満たすとき, x+y と xyのとりうる値の範囲をそれぞ れ求めよ。 (2)α,Bは (α-3)2 +(B-3)" =8 かつα<βを満たす実数とする。 また, α, Bは2次方程式 x²-kx+5 -=0の2つの解であるとする。 このとき, k, α, βの値を求めよ。 (1)(x-3)+(y-3)=8 から [埼玉大] 本冊 数学Ⅱ 例題 50 x2+y2-6(x+y)+10=0 よって (x+y)²-2xy-6(x+y)+10=0 x+y=X, xy=Yとおくと X2-2Y-6X +10 = 0 ←x, yの対称式→基 本対称式x+y, xy で表 す。 ゆえに Y = 1/12 X-3X +5... ① また, x, yは2次方程式-Xt+Y= 0 解である。 ②の2つの実数 ←ー(和)t+ (積) = 0 2次方程式②の判別式をDとすると D=X2-4Y 2次方程式 ② が実数解をもつための条件は X2-4Y0 よって ①を代入して 2-4 (1/2x-3X+5 ) 20 D≧0 ←x, yの実数条件に注 意。 ゆえに ゆえに X2-12X+20≦0 よって (X-2) (X-100 2≤ X ≤10 ...... (3 また、①を変形するとY-12(x-3)2 +12/2 よって、③のもとでYのとりうる値の範囲は ≤Y≤25 2 したがって 2≦x+y≦10, (2)α,βは2次方程式xkx+1=0の2つの解であるから, 解と係数の関係により ≤xy≤25 2 5 2 5 a+β=k, aβ=- ***** 4 2 YA Y=1/2(x-3)2+,/172 25 0 (3/12) 10 X α,βは (α-3)2 +(β-3)=8を満たしαキβであるから, (1) ←α,Bは (1) の x, y と と同様に考察すると, (1) のDについて D>0であり 2 <α+β <10 すなわち 2<k<10 また,aB=1/12 (a+B)2-3(a+β)+5が成り立つから,④より 5 1 k2-3k+5 2 2 ゆえに (k-1)(k-5)=0 2<k<10であるから k=5 よって k2-6k+5=0 同様の条件を満たすから、 同様の考察により,①す なわち 1=1/12(4+B)2 aβ= 100 -3(a+B)+5 などを導くことができる。 ただし, αキβ から D0 となることに注意。 ←2x²-10x+5=0 5 5±√15 このとき、2次方程式x2-5x+1=0 を解くとx=- 2 5-15 5+√15 α <βであるから a= B=- 29 2

解決済み 回答数: 1
数学 高校生

どうして、矢印の部分は、Yをそのままyに変えれるんですか??Y=xyじゃないんですか??

重要 例題 130点(x+y, xy) の動く領域 重要 129 0000 実数x, y が x2+y'≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域 | を図示せよ。 110.1 軌跡である の関係 式を導く 207 指針 x+y=X, xy = Y とおいて,X,Yの関係式を導けばよい。 →x2+y2=(x+y)-2xy を使うと X2-2Y ≦1 ① 条件式x2+y2≦1 を X, Y で表す。 しかし、これだけでは誤り! 2 x, yが実数として保証されるようなX, Yの条件を求める。 → x,yは2次方程式ピー(x+y)t+xy=0 すなわち f-Xt+Y=0の2つの解で あるから,その実数条件として 判別式D=X2-4Y≧0 X=x+y, Y=xy とおく。 実数条件に注意 (x+y)²-2xy≦1 すなわち X2-2Y≦1 解答 x2+y2≦1から したがって Y≧ X2 1 2 2 ① これだけだと 不十分 Yで表す。 MIX+2 また,x,yは2次方程式(x+y)t+xy=0 すなわち -Xt+Y=0の2つの実数解であるから, 判別式をDとす D≧0 Y Y≤X ると 示するか ここで Kyにおき D=(-X)-4・1・Y=X2-4Y よって, X2-4Y ≧ 0 から 12 数 α, βに対して p=a+β,g=αβ とすると, α, βを 解とする2次方程 式の1つは x-px+q=0 X2 Y≤ 4 X2 ①②から 2 2 X² - 1/1 SYS X 24 変数を x, yにおき換えて 4 YA y= 3 3章 1 不等式の表す領域 まるとき x² 1 y= 0 を 2 2 x-y)に したがって、求める領域は、右の図の 斜線部分。 ただし、 境界線を含む。 √√2 x x2 2 2 るとx=±√2 1等とす 城を図 実数条件(上の指針の2)が必要な理由 検討 x+y=X, xy=Yが実数であったとしても,それがx+y's1 を満たす虚数x,yに対応し たX,Yの値という可能性がある。 例えば, x= +1/2/i.y=1/12/1/21のときx+y=1 (実 1 2 数), xy= // (実数)で,x+y's1 を満たすがx,yは虚数である。このような(x,y) を 2 除外するために実数条件を考えているのである。 練習 座標平面上の点(p, g) は x2+y28,x0,y≧0で表される領域を動く。 このと 130点(+α, pg) の動く領域を図示せよ。 p.210 EX80

解決済み 回答数: 1
数学 高校生

なぜ右の例題では実数条件について考えるのに、左では考えないんですか?ご教授おねがいします🙇

3章 重要 例題 129 領域の変換 00000 | 実数x, y が 0≦x≦1,0≦y≦1 を満たしながら変わるとき,点(x+y, x-y)の 動く領域を図示せよ。 指針 x+y=x 解答 基本110, 118 ①, x-y=Y ② とおくと,求めるのは点(X,Y) の軌跡である。 ここで,x,yはつなぎの文字と考えられるから,x,yを消去して,X,Yの関係式 を導けばよい。 CHART 領域の変換 つなぎの文字を消去して,X,Yの関係式を導く x+y=X,x-y=Yとおくと X+Y X-Y x= 2y= 2 x,yをX,Yで表す。 重要 例 例題 130点(x+y, y) の動く領域 207 00000 実数x, y x2+y2 ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域 を図示せよ。 指針 x+y=X, xy = Y とおいて, X, Yの関係式 を導けばよい。 ①条件式x2+y'≦1 を X,Yで表す。 →x'+y=(x+y^2-2xy を使うと しかし,これだけでは誤り! X2-2Y≤1 ② x,yが実数として保証されるようなX,Yの条件を求める。 重要 129 →xyは2次方程式2-(x+y)t+xy=0 すなわち f-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-4Y≧0 ① 実数条件に注意 0x1,0≦y≦1 に代入すると X=x+y, Y=xy とおく。 X+Y_ 0≤ 2 -XSYS-X+2 .X-Y 2 よって [X-2Y X 変数を x, yにおき換えて |-xMy≦-x+2 x-2≦x≦x <OX+Y2 解答 x2+y's1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 ⇔-xs-X+2 したがって 0≤X-Y≤2 X² 1 2 ...... ① ⇔ Y≦X かつ また, x, yは2次方程式2-(x+y)t+xy=0 すなわち X-2≦Y ⇔X-2≦x≦X したがって 求める領域は, 右の図の斜線部分。 ただし, 境界線を含む。 ------- <xy 平面上に図示するか ら,X,Yをxyにおき 換える。 X2 ここで f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると D≧0 D=(-X)-4・1・Y=X2-4Y よって, X2-4Y0 から <2数α. β に対して p=a+β, q=aβ とすると, a, βを 解とする2次方程 式の1つは x-px+q=0 1 不等式の表す領域 [e] y ② 4 125x=1 領域の変換 ある対応によって、座標平面上の各点Pに, 同じ平面上の点Qがちょうど1つ定まるとき、 ①,②から 変数を x, y におき換えて 2 2 X² 1 SY≤ X² 検討 この対応を座標平面上の変換といい, Qをこの変換による点Pの像という。 座標平面上の変換によって, 点P(x, y) が点Q(x, y) に移るとき、この変換を f: (x, y) → (x, y) のように書き表す。 2 1-1 Sys* この例題は、座標平面上の正方形で表される領域内の点をf(x,y)(x+y,x-y) に よって変換し,その像の点全体からなる領域 を求める問題である。 具体的な点をこのf で変換してみるとそのようすがつかめる。 右 の図では、変換のようすがつかみやすいよう に2つの座標平面で示した。 34 Ztava y S₁ 1 (0, 0)(0, 0). (1, 0)-(1, 1), ▲ (1, 1)(2, 0), (0, 1)(1, -1), 0 2' (1/12 1/2) (10) 練習 実数x, y が次の条件を満たしながら変わるとき, 点 (x+y, x-y) の動く領域を図 ③ 129 示せよ。 x+y=X, xy=Y が実数であったとしても,それがx+y'≦1 を満たす虚数x,yに対応し た X,Yの値という可能性がある。 例えば,x=- 数), xy = 1 1 +y= 2 y=1/21-1/2 のとき x+y=1(実 2 (実数)で,x2+y2≦1 を満たすが x, yは虚数である。 このような(x,y) を 除外するために 実数条件を考えているのである。 練習 座標平面 130 る 斜線部分。ただし、境界線を含む。 したがって、求める領域は、右の図の -√2 √√2 1とす るとx=2 検討 実数条件(上の指針の2)が必要な理由

解決済み 回答数: 1
数学 高校生

Pの範囲を求める時に1文字消去してやっても良いでしょうか? x=p-y (p-y)^2+(p-y)y+y^2=1 y^2-py+p^2-1=0 この判別式DがD≧0より D=p^2-4p^2+4≧0 よって... 同じ範囲は出るのですが、これで良いでしょうか?... 続きを読む

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
1/9