学年

質問の種類

数学 高校生

二次方程式の質問です 解の一つである1と-1の時を考えるのはなぜですか?解説を読んでもよくわかりません

214 重要 例題 130 2次方程式の解と数の大小 (3) 00000 *Fix€x²+{2_a}x+4=2a=0&t=1 <x<10>}{}\ 解答 をもつような定数αの値の範囲を求めよ。 128, 1 指針 条件が 「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに注意。 大きく分けて次のA B の2つの場合がある。 A-1<x<1の範囲に,2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に、ただ1つの解をもつ 方程式の2つの解をα, β (α≦β) として,それぞれの場合につ いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] + a 1 B x または a -1<x<1 の範囲に1つ, <-1 または 1<x の範囲に1つ x= 2 である。 + 81 x ® [3] A [1] + 1<x<1 の範囲に2つ ® [4] a=―1 + + 1 x x=-1と1<x<1 の範囲に1つ -1 a B=1 x=1と1<x<1 の範囲に1つ 2-a x=- 2-1 204 a3 ①~④の共通範囲を求 21 解の1つが1<x (-a+3)(- または1<xにあるため ゆえに よって (a-3)(3a [3] 解の1つがx= (-1)=0から このとき、方程式は よって (x+1)(x ゆえに,解はx=- [4] 解の1つがx=1 f(1)=0 から このとき、方程式 よって (x-1) ゆえに、解はx=- 求めるαの値の範囲 2≦a< f(x)=x2+(2-a)x+4-2a とし, 2次方程式 f(x) =0 の 判別式をDとする。 y=f(x)のグラフは下に凸の放物線で,その軸は直線 a-2 [1]2つの解がともに-1<x<1の範囲にあるための条 件は,y=f(x) のグラフがx軸の1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち,次の (i)~ (iv) が同時に成り立つことである。 (i) D≧ 0 (ii) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f (1) > 0 (i) D=(2-α)-4・1・(4−2a) =a+4a-12=(a+6)(a-2) D≧0 から (a+6)(a-2)≥0 ゆえに am-6,2≦a ...... ① (x=472 について -1<> 2 <1 よって ゆえに -2<a-2<2 0<a<4 ...... ② (i) f(-1)=-a+3であるから よって a <3 条件は 「少なくとも1つ」 であるから,y=f(x 定数分離による解法 この問題は、方程式 もう)、2つのグラフが ONE Bx²+(2-a)x 方程式(*)が一 y=x^2+2x+4.. が1<x<1の と同じである 2点(2, ②が点(-1, ②がと グラフがx軸に接する 場合,すなわち, D= の場合も含まれる。 [1] -a+3>0 8-1 軸 ID=0 ついて D=0 図からa>0, la=2のとき よって、① は、グラフカ 130 つような定 方程式

解決済み 回答数: 1
数学 高校生

重要例題125についてです!! ここまでOK!!と書いているところまで分かるのですが、 そこからなぜ共有点の個数が2個を超えるのかがわかりません😭😭解き方を教えてください!!

06 重要 例題 125 絶対値のついた 000 kは定数とする。 方程式 | x-x-2|=2x+k の異なる実数解の個数を調べよ。 基本12 指針 絶対値記号をはずし、 場合ごとの実数解の個数を調べることもできるが、 方程式f(x)=g(x)の解⇔y=f(x), y=g(x) のグラフの共有点のx座標 このとき,y=|x-x-2|とy=2x+kのグラフの共有点を考えてもよいが、方程式を に注目し, グラフを利用して考えると進めやすい。 |x-x-2|-2x=k (定数kを分離した形) に変形し,y2-2のグ ラフと直線y=kの共有点の個数を調べると考えやすい。 CHART 定数kの入った方程式 f(x)=kの形に直す(定数分離) |x2-x-2|=2x+kから 解答 y=|x2-x-2|-2x ...... |x2-x-2|-2x=k ① とする。 x2-x-2=(x+1)(x-2) であるから x2-x-2≧0の解は x≦1,2≦x x²-x-2<0の解は よって, ① は x≦-1, 2≦xのとき -1<x<2 y=(x2-x-2)-2x=x2-3x-2 =(x-3)² - 17 2 1 <x<2のとき y=-(x2-x-2)-2x =-x2-x+2 9 ここまで =(x+1/+1)== ① A 94 ) 検討 y=x2-x-2|のグラフは 次のようになる(p.204 参 照)。 94 YA 2 [s] -10 1 2 2 12 38 これと直線 y=2x+kの 22 有点を調べるよりも、 C -1 -2 17 okiri 0 ように, ① のグラフと y=kの共有点を調べる がらくである。 > ゆえに、①のグラフは右上の図の実線部分のようになる。 与えられた方程式の実数解の個数は,①のグラフと 直線 y=kの共有点の個数に等しい。 これを調べて <-4のとき 0 個; k=-4のとき1個 ; B-4<k<2, TO k=2, 4 9 -くんのとき2個; 4 L のとき3個; 2<k<- <1のとき4個 トレー i0 x

解決済み 回答数: 1
数学 高校生

この問題って右下にあるように定数分離を使っても解けると思うのですが模範解答の解き方も覚えないといけないですか? 定数分離の方が自分的にやりやすいのでもし覚えなくて良かったらその方法だけでやりたいです。

4 第4章 三角関数 Think 10/17x **** 例題 152 三角関数を含む方程式の解の存在条件 OOT とする. 0 の方程式 cos20+asin0+a=0・・・・・・① を満たす 0 が存在するための定数αの値の範囲を求めよ. ( 岩手大・改 ) [考え方 sing とおくと、2倍角の公式を利用して、1の2次方程式として考えることがで きる。 (0) f(1) が同符号のとき f(t) のの係数が正より 区間 ②で③が実数解をもつための条 件は, f(0)>0 かつ f(1)>0 かつ f(t)=0 の判別式をDとすると. D≧0 かつ y=f(t)の軸が区間内 つまり、tの2次方程式の解の存在範囲の問題となるので 2次関数のグラフと軸の である. 共有点を考えるとよい. f(0)=a-1>0より, 解答 a 3 三角関数の加法定理 295 f(0) <0. f(1) < 0 の場合は区間内に解 をもたない。 17 0 a>1 ...... ④ f(1)=2a+1>0より 1 a> 2 8 t D=α-8a +820 より a≦4-2√/24+2/2≦a .......⑥ a-8a +8=0. 4=4+2/2 のとり得る値の範囲に注意しながら、 実数解 tの存在範囲を調べればよいが,そのと 上のようにいろいろな場合が考えられ、場合分けの必要がある場合分けをする ときの着眼ポイントは、「区間の端点の符号」,「軸と区間の位置関係」 「判別式(また は2次関数のグラフの頂点のy座標)」 である. t = sin0 とおくと,00πより 0≦t≦1 .....・・ ② cos20=1-2sin'0=1-2F より ①に代入して, -(1-2f2) + at + α = 0 つまり、 2f+ at+a-1=0 ...... ③ したがって、 ①を満たす 0 が存在するための条件は,区 間②において,tの2次方程式③が少なくとも1つの実数解 をもつこと, つまり ③より f(t)=21+atta-lとお とy=f(t)のグラフが区間②でも軸と少なくとも1つ の共有点をもつことである. (i) (0) (1) が異符号のとき つまり,f(0)f(1) <0 のとき f(0)=a-1 f(1)=2+a+a-1=2a +1 したがって, (a-1)(2a+1)<0 よって、12<a<1 -4<a<0 ......⑦ 軸はto より <<1 4 つまり. 以上(i)~(i)より,求めるa の値の範囲は したがって、④~⑦を同時に満たすαの値は存在しない。 ≦a≦1 Focus 最終的に2次関数の 解の存在範囲における場合分け 48 する。 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注)を参照) f(0)>0,f(1)<0 または, f(0) <0. f(1)>0 より 1 t f(0) f(1)<0 f(0)=0 のとき, す でに f=0 が③の解 となるのでf(1) の符 よって a= =1/12 または a=1 号は関係ない. () f(0)=0 または f(1) = 0 のとき つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 f(t) =2f+ at+a-l =21++ 第4章 「区間の端点の符号」 「軸と区間の位置関係」 「判別式(または2次 関数のグラフの頂点のy座標)」に着目せよ! 注〉 例題152で 「区間の端点の符号」で場合分けを行ったのは, (i) や (i) の場合は端点の符 号を調べれば,軸や判別式を調べなくても、題意を満たす αの値の範囲を調べること ができるからである. このことは, Focus Gold 数学Ⅰ+Aの第2章 「2次関数」 で学んだ 「解の存在範囲」 の問題と関連している. 注) 「定数分離」という着眼から, 例題152を次のように解くこともできる. 2t2+ at+a-1=0 より 2t-1=-at-a g(t)=2t-1.h(t)=-at-a とすると, ③を満たす が区間②内に存在するのは, y=g(t) と y=h(t) が区 間②において共有点をもつ場合である.このとき, h(t)=-a(t+1) より,y=h(t)は定点(-1, 0) を通 る直線であるから, 右の図より、共有点をもつのは, -15-as y=g(t) 1 =h(t) (0, -1) を通る直線から, より、 1/2sas1のときである。 (1,1) を通る直線まで変化する. 練習 152 とする0の方程式 sin' +acos0-2a-1=0………① を満たす 0 (同志社大 改)

解決済み 回答数: 2
1/14