学年

質問の種類

数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

解決済み 回答数: 1
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

回答募集中 回答数: 0
数学 高校生

解答が違いました。なぜでしょうか? 基本例題129です。青チャートです。

2) 76²421 21 12 + 11 = 1 21 k = 10 OR。また、R-5m-2エリー 0≤ 5m-2- R = -21 2² これを満たす整数は、 47 // EM IN 満たす整数は、 719+32g=3 712-3-32なま 71% = 3 (mad 32) 11 F/v. 32X = 0 (mad 32). 0 © × 2 = 72 = 3 (mad 3 2 ) 111 (3) 37 x 4 = 4x = -12 (mad 32) 1² (4 ⑤で、⑤ No. mなので、M=1で最小値=74 ill e) *¹. 91 Date 144 = -3x = 15 (mad 32) KE/²1² X = 32k +5 Taaz!" 71.32k 355-3:32g ==71-321 +352 = 327 + g = -71 k-11 Tanz" 求める整数は、x=32k+5、y=-71R-1(実は整数) A = 5 (mad 32) 11. (3) 73x-56g=ら…ⓐⓓとする。 ⑩:734-5=56gとすると、73X=5(mad56)…①で、 56α = 0 (mad 56 ) cu Q FY₁ 21 (5m-2) + ₁ 74 - 0) = 17x = 5 (mad 56 ) "1") z". -3x③ : 2-3x 5% = -15 (mad 50) 2²-5 × 563 314 722"- 友支整数とし、X=56-3。よって、ⓐより、y=73-4だから、求める整数は、 X=560-3.y=734-4(友は整数) 期間 れこ」を満たす整数について考える。3.7で割ったときの間を各々a.bとすると. N< ZA+ 211¹₂ N = 76+4 + DIY 21 (₁5m-2) +11 (05m-42+11 3a+2=7b+4<3a-7b=2.③であり、③の特殊解は、a-3,bンなので 3(a-3)=7(b-1)で、3X7は互いに素数なので、友を整数とし A-3 = 7k₁b-1= 3k³²² α= 7k+3₁ b = 3k+1² Tjaz". N= 2/k+|| CEID. また、れなで割ったときの高効とすると、9:58+3であり、 -42t|1=31 21k+11=5ℓ+3211-5ℓ=-750-21R=7.④.④の特殊解 =-7R-2なので、5((+7)21(+2)で、5と21は互いに素なので、数とし J 8 l+ 7 = 2/m₂k+ 2 = 5m =) - l = 21m-7₂ k = 5m-2-7¹) ₁ N² 105m -31%%"

解決済み 回答数: 1
数学 高校生

この問題の合同式を使った解法について質問なんですが、最初のNはなぜこのように置けるのでしょうか?

S 整数の性員 例題262 考え方 3で割ると2余り, 5で割ると3余り, 7で割ると4余る3桁の正の整数 のうち、最大のものを求めよ. 不定方程式の応用 (1) (その1) Nは整数x, y, z を用いて, N = 3x+2=5y+3=7z+4 と表せるの 3で割ると余り, 5で割ると3余り, 7で割ると4余る整数をNとする。 y, zについての不定方程式ができる. 3で割ると2余る← 5 で割ると3余る 7で割ると4余る⇔ これらからNの規則性を見つける. 問題文の「3で割る,5で割る, 7で割る」から, N=15α+35万+ b,cは整数)という数を考え, 合同式 (p.440) を利用する。 (その2) (その3) N+1は3の倍数 N+2は5の倍数 N+3は7の倍数 答1 3で割ると2余り, 5で割ると3余り 7で割ると4余る 整数をNとおくと, N=3x+2=5y+3=7z +4 (x,y,zは整数) とおける. 3x+2=5y+3 より, 3x-5y=1 .....① .....1 ①の解の1つは、x=2, y=1 であるから 3×2-5×1=1 ...... ② 0304 3(x-2)-5(y-1)=0 ①-②より, したがって, 3(x-2)=5(y-1) り,x-2は5の倍数であり, kを整数とすると, x-2=5k, すなわち, x=5k+2 ...... ③ 3x+2=7z+4 3と5は互いに素よ また, ③より, 3(5k+2)+2=7z+4, すなわち, 24 15k-7z=-4 ...... ・④ ④の解の1つは,k=3, z=7 であるから, 15×3-7×7=-4 ...... ⑤ 5 ④ - ⑤ より, 15(k-3)-7(z-7)=0 ミ まず不定 3x+2= を考え 次に |3x+ を考

回答募集中 回答数: 0
数学 高校生

z=7とk=3ですると最後はLに0を代入したら答えになるんですが、回答はz=-8とk=-4でLに1を代入しています。この違いはなんですか?

そこで,問題の条件を1次不定方程式に帰着させ,その解を求める方針で解いてみよう。 9000 510 3 で割ると2余り、5で割ると3余り,7で割ると4余るような自然数 ものを求めよ。 基本 例題129 1次不定方程式の応用問題7270 1/sx'Y89®。 最本121.12% 3で割ると2余る自然数は2,5,8.11,14, 17, 20, 23, 5 で割ると3余る自然数は 3,8,13, 18, 23, 4 が共通の。 8が最小である。 指針> と5の最小公倍数 15すつ大きくな。 また、7で割ると4余る自然数は B 4.11, 18, 25,32, 39, 46,53. の, Bから、求める最小の自然数は 53 であることがわかる。 の 8,23, 38,53. 68, い(相当多くの数の書き上げが必要な)場合は非効率的である。 解答 2はx, y, zを整数として,次のように表される。 2=3x+2, n=5y+3, n=7z+4 3x-5y=1 注意 3x+2==5y+3 かつ 5y+3=7z+4 として解いてもよいが、 数が小さい方が処理しゃ の 3x+2=5y+3から x=2, y=1 は,① の整数解の1つであるから 3(x-2)-5(yー1)=0 すなわち 3(x-2)=5(y-1) 3と5は互いに素であるから,kを整数として,x-2=5k と表 される。よって い。 4このとき y=3k+1 x=5k+2(k は整数) の 43x-7z=2から のを3x+2=7z+4に代入して 3(5k+2)+2=7z+4 7z-15k=4……③フー7 kコ3 3(x-3)-7(z-1)=0 ゆえに,1を整数とし ゆえに 2=-8, k=-4は,③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(k+4) 7と 15は互いに素であるから,しを整数として,z+8=15/ と 表される。よって これをn=7z+4に代入して n=7(15/-8)+4=105/-52 最小となる自然数nは,1=1 を代入して x=71+3 これとx=5k+2を て 5k+2=71+3 よって 5k-7=1 ス=15/-8(1は整数)、 これより,k, Iが連 るが,方程式を解く 1つ増える。 53 検討百五減算 ある人の年齢を3, 5, 7でそれぞれ割ったときの余りをa, b, c とし, n=70a+216+1 る。このnの値から105を繰り返し引き, 105 より小さい数が得られたら,その数がそ 齢である。これは3,5, 7 で割った余りからもとの数を求める和算の1つで,百五減算 る。なお、この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると、 x=a(mod3), x=b(mod 5), x=c(mod 7)であり、 n=70a=1·a=α=x (mod3), n=216=1·6=b=x(mod5), n=15c=1·c=c=x よって、カーズは3でも5でも7でも記n加n

解決済み 回答数: 1
数学 高校生

課題3のやり方がわかりません、 誰か教えて下さると嬉しいです🙇🏼🙇🏼

課題学習 回1 開平法 学習のテーマ数と式 平方根を筆算で求める方法は古代ギリシャの時代からいろいろな方法が研究 されてきた。日本では江戸時代に盛んになった和算で,開平法として伝承さ れた。ここでは, 開平法の原理などを調べてみよう。 5 V72361 を筆算で求めるには,次のようにする。数字は,小数点を 基準に2桁ずつに区切っておく。 0 2乗して7以下になる最大の整数 として2を見つけ,ルートの上に2 を書く。 27から 2° すなわち4を引いた結果 課題 1 2;6 V7:23:61 2 人 10 1 モー 2 4 46 3:23 J人正側の3と,上から下ろしてきた 23 を 6 2:76 52 並べて 323 と書く。 3 左側では, 2+2=4を縦書きで計算する。 g 4口×口<323となる最大の整数口として6を見つっけ,ルートの 15 上に6を書く。 の 323 から46×6すなわち 276を引き,上から下ろしてきた 61 を並べて書く。左側では,46+6=52 を縦書きで計算する。 以下,これを繰り返す。この方法で(72361 を求めよう。 代共の な式 課題1の方法は, 計算が終わらなくても続けていけば,平方根がいく らでも詳しく求められる。また, 小数に対しても適用できる。 20 とを 課題 2 次の平方根を課題1の方法で小数第3位まで求めよう。 (2) V12.34

回答募集中 回答数: 0
1/4