学年

質問の種類

数学 高校生

(ii)と(iii)の途中式がよくわかりません。 教えてほしいです🙇🏻‍♀️

練習問題 5 関数のクラフ 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (ii) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 平方完成すると y=(x-3)2+1 (軸対称 元の なので,頂点の座標は (31) である. グラフ (i) x軸に関して対称移動すると, 頂点は (3-1)に移り, グラフの上下が反転す るのでx2の係数は -1 となる. よって, 求めるグラフの方程式は、 (-3, 1) (3.1) (-3, -1) 0 (3,-1) x y=(x-3)2-1 (=-x+6.z-10) 原点対称 軸対称 (y軸に関して対称移動すると,頂点は(-3, 1) に移り,グラフの形状は 変化しないのでの係数は1となる. よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (曲) 原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=-(x+3)-1 (=-x²-6x-10) コメント 移動に

未解決 回答数: 1
数学 高校生

(i)と(iii)の問題についてです。 二枚目の写真の答え方でもいいですか?

72 第2章 関数と関数のグラフ 練習問題 5 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (i) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 S 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 =g 平方完成すると (y軸対称 y=(x-3)2+1 なので,頂点の座標は (3,1) である. 元の (i) x軸に関して対称移動すると,頂点は (3-1)に移り,グラフの上下が反転す (-3, 1) (-3,-1) 0 (3,1) グラフ (3, -1) X 求めるグラフの方程式は, y=(x-3)-1 (=u2+6-10) り長いび 原点対称った るので㎡の係数は -1 となる。よっては (x軸対称) (y軸に関して対称移動すると, 頂点は (-3,1) に移り、グラフの形状は 変化しないのでの係数は1となる.よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=(x+3)-1 (=-x²-6x-10) コメント 対称移動においても,平行移動と同じように一般的な法則があります。 対称移動の一般則 x 軸に関して対称移動

未解決 回答数: 0
数学 高校生

なぜこのように変形できるのですか?

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 0000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP」 点 Q を,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 |点Pが直線x=1上を動くとき, 点 Q の軌跡を求めて、図示せよ。 【類 大阪市 (B) Q は, 0 に関して Pと同じ側にある。 指針 求めるのは,点Pに連動して動く点Qの軌跡。 基本1 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P Qの関係は 点Qが半直線 OP 上にあるX=tx, Y=ty となる正の実数が存在する このことと条件(A) から, tを消去して, X, Y を x, yの式で表す。 そして、点Pに関 する条件 X=1より, x,yの関係式が得られる。 なお, 除外点に注意。 参 ※質 点 Q の座標を (x, y) とし、点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x, y) P(X, Y) X=tx, Y=ty (t は実数) √x2+y2(x)2+(ty)" =4 ただし,点Pは原点と異なるから t=0, (x, y) = (0, 0) 更に, (B) から, t> 0 である。 (A)から 4 ゆえに t(x2+y2)=4 よって t=- かから したがって X=- 4x x2+y2, Y=- x²+ye 22を消去する。 (19)A 4x (−1)=0 点Pは直線x=1上を動くから x2+ye =1(S)AX=1 に X=- 4x x+y ゆえに x2+y2-4x=0 y よって (x-2)'+y2=4 0-(1-)+1 代入する。こう したがって, 求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 ただし, (x,y) ≠ (0, 0) である から, 原点は除く。 -2- ☆注意 本間は、反転の 図示すると、 右図のようになる。(0) (=g=x である。反転について

解決済み 回答数: 1
1/47