学年

質問の種類

数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
数学 高校生

大門1わかりません

の数 る。 また、 n (P) は ∩B) =n(A)+n(B) ■は全体集合 I p.68 69 も参照。 方法 すべて求める。 目の要素がαの集 書き上げ、続いて、 ■の要素がもの集合、 ■合の順に書き上 によい。 りあり, Bの 方がる通り して求めよ。 © 2 集合の要素の個数の計算 全体集合を U = {1, 2, 3, 4, 5, 6,7} とする。 ひの部分集合 (1,3,5,6,7}, B={2, 3, 6,7} について, n (A), n(B), n (A) を求めよ。 Bが全体集合 Uの部分集合でn(U)=50, n (A)=30, (AUB), 集合A, (イ) ANB (ウ) AUB (エ) AnB n(B)=15, n(A∩B)=10 であるとき、 次の集合の要素の個数を求めよ。 CHART & SOLUTION 集合の要素の個数の問題 図をかいて ① 順に求める EN n(A)=n(U) -n (A) を利用する。 ② 方程式を作る 国の方針により, 求めやすいものから順に, 個数定理を用いて集合の要素の個数を求め n (AUB) =n(A)+n(B)-n (A∩B) を利用する。 ②は基本例題3を参照。 入ってないやつ (1) n(A)=5, n(B)=4 AUB={1,2,3,5,6,7} である からn(AUB)=6 = {24} であるからn(A)=2 n(A)=n(U)-n(A) (2) (7) (1) 10 (2) n =50-30=20(個) n(ANB)=n(U)-n(ANB) =50-10=40 (個) (AUB)=n(A)+n(B) - n(ANB) =30+15-10=35 (個) In(ANB)=n(AUB) =n(U) -n (AUB) -40% =50-35=15 (1) ・U 4 A 5 -U(50) A (30) 3 6 7 ANB (10) B OL 00000 2 B (15) p.264 基本事項 1 Js 265 1歳 1 ←左の図のような, 集合の 関係を表す図をベン図 という。 個数定理を利用。 集合の要素の個数 場合の数 ←補集合の要素の個数。 (A∩B)=15 であるとき、 次の集合の要素の個数を求めよ。 (ア) A (イ) ANB(ウ) AUB ド・モルガンの法則 A∩B=AUB (ウ)の結果を利用。 PRACTICE 10 (1) 上の例題 (1) の集合 U, A, B について, n(U), n(B), n(A∩B), n (AUB) を 求めよ。 (②2) 集合 A,Bが全体集合 Uの部分集合でn(U)=80, n(A)=25, n(B)=40, (エ) ANB

未解決 回答数: 1
数学 高校生

(3)のPを通る道順の数の求め方がなぜこのようになるのか教えてください。

378 基本例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき、次 の場合は何通りの道順があるか。 [類 東北大] 全部の道順 地点 C を通る。 (3) 地点Pは通らない。 (4) 地点Pも地点Qも通らない。 基本27 指針 AからBへの最短経路は、右の図で右進 または上進 する ことによって得られる。 右へ1区画進むことを→, 上へ1区 画進むことを ↑ で表すとき, 例えば、 右の図のような2つの 最短経路は 赤の経路なら 1→→11→1→1 青の経路なら 111→→11→1→→ で表される。したがって, AからBへの最短経路は、 つまり ここで つまり (502) 右へ1区画進むことを→, 上へ 1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから UELSSO 11! 5!6! 11・10・9・8・7 5・4・3・2・1 462 (通り) (2) AからCまでの道順, CからBまでの道順はそれぞれ 20- 3! 1!2! よって、求める道順は →5個, 16個の同じものを含む順列で与えられる。 (2) A → C, C → B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 (4) すべての道順の集合を UPを通る道順の集合を P, Q を通る道順の集合をQと =3(通り), すると, 求めるのはn (PnQ)=n(PUQ)=n(U) -n (PUQ) ド・モルガンの 法則 (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+nQnPnQ) (PまたはQを通る) = (P を通る) +(Qを通る) (PとQを通る) (3) P を通る道順は よって, 求める道順は 8! 4!4! 3×70=210 (通り) -=70(通り) 5! 5! 2!3! 2!3! × -=10×10=100 (通り) 7! (4) Q を通る道順は 3!4! PとQの両方を通る道順は 462-100=362 (通り 3! 1!2! X -=35×3=105 (通り) 5! 3! [T=48214 × -=10×3=30(通り) 2!3! よって,PまたはQを通る道順は ゆえに、求める道順は AL 1!2! A 100+105-30=175 (通り) 462-175=287 (通り) C C P 7 組合せで考えてもよい 次ページの 別解 参照。 AからCまでで →1個, 12個 CからBまでで 4個, 14個 を通らない) =(全体) (Pを通る) 10802 artil ▼PからQに至る最短の NUE 道順は1通りである。 別 検討 (1 3

回答募集中 回答数: 0
数学 高校生

全体って、どういう意味ですか?

倍数の個数 2016 基本例題 1 (2)5または8の倍数 の栄養の 100 から 200 までの整数のうち,次の整数の個数を求めよ。 (1) 5 かつ8の倍数 p.97 基本事項 (3)5で割り切れるが8で割り切れない整数 (4)5と8の少なくとも一方で割り切れない整数 のタイプ。 →n(A∩B) 3 指針▷ (1)5の倍数かつ 8の倍数 58の公倍数であるから, 最小公倍数 40の倍数の個数を求める。 (2)5の倍数または8の倍数→n (AUB) のタイプ。 個数定理の利用。 少なくとも (4) 58の少なくとも一方で割り切れない数→n (AUB) のタイプ。 (3) (A∩B)=n(A) -n (A∩B) のタイプ。 「●で割り切れる」=「●の倍数」 一方」口コ ド・モルガンの法則 AUB ANB が使える。 n (A∩B)は(1) で計算済み。 でもいい。 ココからチウ注意 (4) は (2) の補集合ではない。 (2) のAUB の補集合は AUB=ABである。 こっから 解答 U,A,Bはどんな べつに あるかを記す。 いくら 100から200 までの整数全体の集合をひとし,そのうち5の倍 数,8の倍数全体の集合をそれぞれA,Bとすると 5・40},B={8・13, 8・14, ., 8・25} ・は積を表す記号であり A={5・20,5・21, ・・・, 100=8・12+4 ゆえに n(A)=40-20+1=21, n(B)=25-13+1=13 5と8の最小公倍数は (1) 5 かつ8の倍数すなわち 40の倍数全体の集合は ANB で あり A∩B={40.3, 40・4,40・5} よって n(ANB)=3 ( 25 または8の倍数全体の集合は AUBであるから n(AUB)=n(A)+n(B)-n(ANB) =21+13-3=31 (3)5で割り切れるが8で割り切れない整 (3) - U 数全体の集合は ANB であるから A n(ANB)=n(A)-n(ANB) =21-3=18 (からず4) 5と8の少なくとも一方で割り切れな い整数全体の集合は AUBであるから n (AUB)=n(A∩B) 全体って =n(U)-n(ANB) なに? =(200-100+1)-3=98 (+(A0) 1 から 100 までの整数のうち、次の整数の個数を求めよ。 (1)4と7の少なくとも一方で割り切れる整数 (2) 4でも7で割り切 298 練習 ②1 ANB (4) [1]]]] A B 0 ANB 100=402+20 ST3610X 個数定理 ANBはAからANBL 除いた部分。 AMI ▼ド・モルガンの法則 AUB=A∩B ズーム UP 注意 ズームU の内容が 個数定 例題1で よいが, できない 個数定理 個数定 B AUER ド・モ 個数定 U:100 かつ のよう (1) Ar (3) 5 8 U n 集 1か よ 例景 そ合 16

未解決 回答数: 1
1/3