学年

質問の種類

数学 高校生

数A 解説見てもよくわからないです。詳しい解説お願いします。 (1)の自称Aの時点で何言っているのかわかりません

いろな試行と確率 403 204 反復試行(4) さいころを回(n≧2) 投げるとき,次の確率を求めよ. 出る目の和がn+2である確率 (2)出る目の積が4の倍数である確率 和が+2になる場合を考えると, 方 (1) すべての出る目が1の場合その和はnになる. 2の目が1回出て,残りが1の目のとき,和はn+1 あと1必要なので、2の目が合計2回出る 3の目が1回出て, 残りが1の目のときは n+2 4の目が1回出て, 残りが1の目のとき,和は+3 となり,不適. 5,6の場合も同様に不適である. (2)4の倍数になるのは, 4×(整数)=2×2×(整数) このことから出る目の積が4の倍数になるには, 少なくとも1回は4の目が出る 少なくとも2回は2の目または6の目が出る の場合であるから, 4の倍数にならない」 (余事象) を考えてみる。 (1) 出る目の和がn+2になるのは, 事象A2の目が2回, 残りが1の目 事象B3の目が1回 残りが1の目 6 **** 2の目が出る確率 目16 確率は、P(A)=,ax (x(c) 2 n(n-1)x()" P(B) = „C₁x()x(t)=(+)" n-1 1の目が出る確率 n =n° 16 , よって、P(A)+P(B)=(n-1)×(1/2)+(1/2)^ (n²-n+2n). (t)" n(n+1) 2 1x (1) (2)4の倍数にならないのは, 事象A: 135から出る 確率はP(A)-(2)-(2) 事象B:26から1回だけ出てあとは 1, 3, 5から出る 数分解したとき N=2・3・5" と素因 P(B)-C()(3)-(+)-(+)" 4の倍数p 4の倍数ではない ⇔p=0 かp=1 2n = よって、4の倍数になる確率は, 1-(1/2)-2/7(1/2)=1 2n 2n+3/1\" 3 2 余事象の確率 1-P(A)-P(B) 3 投げるとき、次の確率を求めよ. (2)出る目の積が6の倍数である確率

解決済み 回答数: 1
数学 高校生

(2)の問題の意味がわかりません。全員プレゼントを1個ずつしか持ってきてないのに、例えばP(4)のとき、4人全員にプレゼントを配るのって不可能じゃないんですか?これって私の解釈の仕方がおかしいんですかね?誰か教えてください🙏

406 基本 例 45 和事象 余事象の確率 00 これらのプレゼントを一度集めてから無作為に分配することにする。 ② 自分が持ってきたプレゼントを受け取る人数がん人である確率をP(k) と あるパーティーに, A, B, C, Dの4人が1個ずつプレゼントを持って集まった。 (1) AまたはBが自分のプレゼントを受け取る確率を求めよ。 する。P(0), P (1) P(2), P(3), P (4) をそれぞれ求めよ。 基本 43 44 指針 (1) A, B が自分のプレゼントを受け取るという事象をそれぞれA,Bとして 和事象の確率 P(AUB)=P(A)+P (B)-P(A∩B) を利用する。 (2) P(0) が一番求めにくいので,まず, P(1) P (4) を求める。 そして, 最後に P ( 0 ) をP(0) +P(1)+P(2)+P(3)+P(4)=1 (確率の総和は1)を利用して求める。 (1) プレゼントの受け取り方の総数は 4! 通り A, B が自分のプレゼントを受け取るという事象をそれ ◆4個のプレゼントを1列 に並べて, A から順に受 け取ると考える。 解答 ぞれ A, B とすると, 求める確率は P(AUB)=P(A)+P(B)-P(A∩B) 3! 3! 2! 6 6 = + 2 5 + 4! 4! 4! 24 24 24 12 (2) P(),P(3) P(2), P (1) P(0) の順に求める。 [1] k=4 のとき,全員が自分のプレゼントを受け取る 1 1 から1通り。 よって P(4)= = 4! P(3) =0 [2] =3となることは起こらないから [3] k=2のとき,例えばAとBが自分のプレゼント を受け取るとすると, C, D はそれぞれD, Cのプレ 乗車ゼントを受け取ることになるから1通り。 Aの場合の数は,並び □□□の3つの□ に, B, C, D のプレゼン トを並べる方法で3!通り。 製品不 3人が自分のプレゼント を受け取るなら、残り1 人も必ず自分のプレゼン トを受け取る。 よって P(2)= 4C2X111) 4! 4 自分のプレゼントを受け Si 取る2人の選び方は2 通り。 [4] k=1のとき, 例えばAが自分のプレゼントを受け 取るとすると, B, C, D はそれぞれ順にC,D, B ま たは D,B,Cのプレゼントを受け取る2通りがある検討 から P(1)= 4C1×2_1 4! 3 [1]~[4] から P(0)=1-{P(1)+P(2)+P(3)+P(4)} k=0のときは、4人の 完全順列 (p.354) の数で あるから --(1+1+1/5)=1/ 3 よってP(0)= 4 24 9 4! 8 8

解決済み 回答数: 1
数学 高校生

(1)の解説で、逆玉ねぎ型確率と書いてあるところで5より大きいものから、6より大きいものを引いたら、最大値が5になるくないですか? そこがよくわからないので教えてください。

場合の数と確率 実力アップ問題 104 難易度☆☆☆ CHECK 1 CHECK 2 CHECK3 9枚のカードに1から9までの数字が一つずつ記してある。このカードの 中から任意に1枚を抜き出し,その数字を記録し,もとのカードのなかに 戻すという操作を"回繰り返す。 (1) 記録された数の最小値が5となる確率を求めよ。 (2) 記録された数の積が5で割り切れる確率を求めよ。 (3) 記録された数の積が10で割り切れる確率を求めよ。 (名古屋大*) ヒント! (1) 玉ネギ型確率の逆パターンになる。 (2) (3) 余事象の確率や, 確率 の加法定理を用いて解く。 独立試行の確率の問題になっている。 (1) 取り出したn枚のカードの数字の最小 値をxとおくと, 求める確率P(x=5) は, P(x=5)=P(x≧5)-P(x≧6) 5,6,7,8,9のカード 6,7,8,9のカードを引く】 (5)\" 4" = ・・・( 参考 逆玉ネギ型確率 最小値 P(x≧5) |P(x=5) P(x ≥6) =P(x≧5)-P(x≧6) (3) 事象Bを, 「記録された数の積が2で 割り切れる。」 とおく。 記録された数の積が10で割り切れ る確率は, P(A∩B) となる。 この積が5でも2でも割り切れる確率 よって, P(A∩B)=1-P(A∩B) 余事象の確率 ~ =1-P(AUB) ドモルガンの法則】 確率の加法定理 =1-{P(A)+P(B)-P(A∩B)} 5以外のカード (1,3,7,9のカードを引く 13570のカード

解決済み 回答数: 1
数学 高校生

(1)の黒の矢印より下がわからないです。 上でk回の時を出しているのでそのままk=2を代入すればいいのではないですか?何故わざわさ余事象を使うのですか? 教えてください。

実力アップ問題 103 難易度 次の問いに答えよ。 CHECK 1 CHECK2 ぜったい2回は CHECK3 (1) 1つのサイコロを6回振って,そのうち少なくとも2回,3以上の目が 出る確率 P を求めよ。 (2) 3 つのサイコロを同時に振るとき,出る目の最大値が4になる確率! を求めよ。 (東京水産大) ヒント! (1) 反復試行の確率の問題である。余事象も利用する。 (2) “玉ネギ 型確率” の典型的な問題である。 基本事項 反復試行の確率 起こる確率がp のとき, (2) . ある試行を1回行って, 事象Aの "C,p' q" この試行をn回行って,その内 回だけ事象A の起こる確率は, (q=1-p) (1) 1つのサイコロを1回振って3以 上の目の出る確率をp とおくと, P= (4) (3,4,5,6の目 = 2 6 3 (2=1-p=1/3) サイコロを6回振って, そのうちん 回だけ3以上の目の出る確率を Pk (k=0,1,2,..., 6) とおくと, i-k . 6-k 1 P=Ckp ·*=C()*()** 3つのサイコロを同時に振って, 出 る目の最大値が4以下となる確率 P(X≦4) は,3つのサイコロのす べてが4以下の目になるので, 1,2,3,4の目 P(X ≤ 4) = (²)* = (³)* 同様に,出る目の最大値が3以下 となる確率P(X ≦ 3) は, 1,2,3の目 P(X=3)=(22=(1/2) 以上より,出る目の最大値が4となる 確率 Q=P(X=4) は, Q=P(X≦4)-P(X≦3) = ()-(1)2 -64-27 37 (答) 以上より、1つのサイコロを6回振 って少なくとも2回,3以上の目の 216 216 参考 出る確率は, P=1-(Po+P) これは,次のような玉ネギの断面図 で考えるとわかりやすい。 144 余事象の確率 P(X≦4) 6 1-{(1)+(3)(13)} 3°-(1+12)_716 3º ( P(X≦3) 729 |P(X=4) =P(X≦4)-P(X≦3)

解決済み 回答数: 1
1/12