学年

質問の種類

数学 高校生

整数解を求める方法でこの三つの方法があると思うんですが、どの場合どれを使ったらいいのか見分ける方法はありますか?

460 第8章 整数の性質 例題 253 方程式の整数解 (1) 次の不定方程式の整数解を求めよ. (1) 2x-3y=21 [考え方 解答 Focus (②) 2x-38-212550305210形という関係があるに素であることを利用す。 (2) xとyの係数, 539=52×10+19 という関係がある。 (1) 2x-3y=21 より, 2x=3(y+7) ......① 2と3は互いに素であるから, xは3の倍数とな る. 撥数でかいの できたら、ユークリットやる したがって, kを整数として, x=3k とおける . これを①に代入すると, 2×3k=3(y+7) 2k=y+7 より y=2k-7 よって, 求める整数解は, (2) 52x+539y=19 x=3k, y=2k-7 (kは整数) (別解) 2x-3y=21 より, y=²x-71071081/ete yは整数より, xは3の倍数となる. したがって, x=3k (kは整数) とおけ, y=2k-7 よって, (2) 539-52x10+19 x=3k, y=2k-7 (kは整数) bibe これを与えられた方程式に代入すると, 52x+(52×10+19)y=19 NJIMACARO 倍数となり, んを整数として 整理すると 52(x+10y)=19(1-y) ...... ① 5219は互いに素であるから, x+10yは19の x+10y=19k, すなわち, x=19k-10y これを①に代入すると, 52×19k=19(1-y) 52k=1-yより y=-52k+1 よって, 求める整数解は, x=539k-10,y=-52k+1 (kは整数) 三習 次の不定方程式の整数解を求めよ. 253 (1) 2x-5y-25 * (税込) 2000 (2) 48x+491 ** 不定方程式 ax+by=c (aとbは互いに素) で, aまたはbとcが1より大きい公約数をもつとき, (xの式)=g(yの式) (pとgは互いに素) と変形する xが3の倍数でないとき yは整数にならない. 77 xとyの係数の大きい方 の数 539 を小さい方の数 52で割る. y=-52k+1 より, x=19k-10y =19k-10(-52k+1) =539k-10 181 74-10

回答募集中 回答数: 0
数学 高校生

244番の問題では、xの値を求めてから,、それを代入して、yの値を求めたのに、245番の問題では、なぜいきなりkを整数としておくことができるのですか?

考え方 Check] 例題 244 方程式の整数解 (3) 不定方程式 7x 17y=1 の整数解を求めよ. 不定方程式の一般解を求めるには, 1組の簡単な解 (特殊解) を見つけてそこ から求める. 特殊解の見つけ方は, (1) 実際に値を代入していき方程式を満たすx,yを探す (2) ユークリッドの互除法を用いて, 方程式を満たすx,yを探す。 などがある. それぞれ次のように考える. (1) 7x-17y=1 の係数に着目すると, 7より17の方が大きいので、 y=1,2,3…. を代入していき、xの値を探す。 y=1 を代入すると, 7x=17+1=18 番 これを満たす整数xはない。 y=2 を代入すると, 7x=34+1=35 - より, x=5Lの 以上より,特殊解 (x,y)=(5,2) 21. (2) 7x-17y=1の係数に着目して, ユークリッドの互除法を用いる。 17=7×2+3 ・・・① 7=3×2+1 ② より 17-3×2 ….. ③ ①より, 3=17-7×2 として, ** これを③に代入すると, 1=7-(17-7×2)×2 1=7-17×2+7×4 1=7×5-17×2 したがって, 7×5-17×2=1 り 特殊解 (x,y)=(5,2) また、特殊解は求め方により、 いくつも存在するから, 求める一般解の表し方は、求め方により、 異なる場合 もある. 717 は互いに素な で 最後に最大公約 数1が現れる. CH» à  à ³6 1905 zusados 11 さらに,与えられた不定方程式を1つの文字について 解き,x,yが整数であることを利用して求めることもする できる.(次ページの注を参照 ) そのような上に、メージ stafia Sstml 解 Flocus 練習 244 7x-17y=1の解の1つは(x,y)=(52) である. これを不定方程式に代入して、 7×5-17×2=1 ......① 7x-17y=1 _7(x-5)-17(y-2)=0 て 7(x-5)=17(y-2 ...... ③ ここで, 7 17 は互いに素であるから, x-5は17の倍数 となり x-517n (nは整数) とおける これを③に代入すると, 7・17n=17(y-2) 7n=y-2 ②-① より よって, 求める一般解は, x=17n+5,y=7n+2 (nは整数) より, y=7n+2 ここで, 7 7 17(y-2) 7 これを①に代入して, x=5+ 不定方程式の整数解を求める際には,まず特殊解を見つける 注例題244の一般解は, x=17n+5, y=7n+2 であったが x=17n-12,y=7n-5 などと表してもよい。 となる. 注 次のように求める方法もある. (1つの文字について解いて, x,yが整数であることを利用する) 17y+1 7x-17y=1 をxについて整理すると, X=- 17y+1_17(y-2)+35 2 ユークリッドの互除法 =5+ 17(y-2) 7 次の不定方程式の整数解を求めよ. (1) 2x+11y=5 特殊解 (x,y)=(52) を利用する. ......② (見つけ方は考え方を 参照) y-2は7の倍数 17(y-2) x, 5は整数より、 7 も整数で,717 は互いに素であるから, Jy-2は7の倍数、すなわち, y-2=7n (nは整数) とおける. これを②に代入して、x=17n+5 より 求める一般解は, x=17n+5,y=7n+2 (nは整数) (2) 4x+3y=1 431 8 整数の性質

回答募集中 回答数: 0
数学 高校生

<1>(2)の線を引いたところをどこから導いたのか、<2>(1)の考え方を解説お願いします🙇🏻‍♀️書き込みは無視してください

数学Ⅰ・数学A 第4問 (選択問題) (配点20) 〔1〕 (1) 不定方程式 と表せる。 第3問~第5問は,いずれか2問を選択し、 解答しなさい。 (2(x-8)-19 (2-3) ₂0 (2) 整数 s, tを用いて ウエ s+ 2= 12x-19y=1 を満たす整数x,yの組のうち、 xが正で最小になるものは x= ア y= イ であるから,この不定方程式の整数解はんを整数として x= ウエ k+ ア y=オカ k+ イ と表せる。 x-8=19k 27. 46 tuakts osi = オカ t+ 12.24 36 4860728496 1938577695 ア と表せる整数zについて考える。 このように表せる整数のうち, 正で最小のものはキクである。 また, このように表せる整数zをすべて求めると, uを整数として z= ケコサu+ キク 29 84 549 塩 イ A ? (4 x4 736 (数学Ⅰ・数学A 第4問は次ページに続く。) 7° 1977 10198 730 105 416 62 38 57 + & t& 数学Ⅰ・数学A 〔2〕 自然数Nは7進法で9桁で表されるとする。 Nを7進法で表したときに, *上から3桁ずつ区切って得られる数を順にa,b,c とする。 たとえば,N=123456012 (7) とするとa=123(n)=66,6=456=237, c=12 (7)=9である (1)a+b+cが2の倍数であれば, a,b,cの値にかかわらずNは2の倍数 であることを証明しよう。 まず, Nはa,b,c を用いて 図+6×7 N=ax70 +c と表せる。 また仮定より, 整数dを用いて a+b+c=2d と表せる。 このこ とから N=2{d+ センタ (344a+b)}る となるので, Nは2の倍数である。 DAS (2) (1) の証明と同じ方法を用いると, a+b+cが2以外の倍数のときでも, 同じ方法で倍数を判定できるものがある。 を2以上の整数として,次の命題を考える。 OPI ・命題 a+b+cmの倍数であれば, a, b,cの値にかかわらずNはmの 倍数である。 I 命題が真となるようなmのうち, 素数であるものはm=2, ツテである。また, 命題が真となるような2以上の整数mは, (1) で証明し たm=2のときも含めて, 全部でトナ個ある。 27 チ

回答募集中 回答数: 0
数学 高校生

答えや解説を見ても分からないのでもう少し詳しく解説してくださる方がいましたらお願いします🙇🏻‍♀️

重要 例題29 ユークリッドの互除法と1次不定方程式 (1) 不定方程式 161x+19y=1を満たす整数x,yの組の中で, xの絶対値が最| ①小のものはx=アイ,y=ウエである。 (2) 不定方程式 161x+19y=5 を満たす整数x,yの組の中で, xの絶対値が最 a 大量 小のものはx=オ,y=カキクである。 POINT ! 1次不定方程式の整数解の1組が容易に見つからない場合は, ユークリッドの互除法を用いる。 ( 51 参考) (2) (1) の等式の両辺を5倍すると 161(5x) +19(5y)=5 よって,(1) で見つけた整数解の1組をそれぞれ5倍したものは 161x+19y=5の整数解の1組である。 解答 (1) 161x+19y=1 161=19.8+9 19=9・2+1 この計算を逆にたどると 1=19-9・2 01- =19-(161-19・8)・2 =161・(-2)+ 19・17 ① とする。 移項すると 9161-19・8 移項すると 119-9・2 ...... (2-8-) (ar- したがって 161・(-2)+19・17=1 ① ② から 161(x+2)+19(y-17) = 0 161 と 19 は互いに素であるから、③より ...... (2) 161x+19y=5 ②から ④ - ⑤ から 161(x+10)+19(y-85)=0 161 19 は互いに素であるから, ⑥ より ..... (2) x+2=19k, y-17-161k (kは整数) よって x=19k-2, y=-161k+17 |x|が最小となるのはん=0のときであるから x=アイ- 2,y=ウェ17 ④ とする。 161・(-2.5)+19.(17・5)=5 ...... ⑤ ⑥ 1s)(3) ③ xの係数 161 とyの係数 19 にユークリッドの互除 法の計算を行う。 6518-5 x+10=19l, y-85-1617 (Zは整数) よって x=191-10, y=-161+85 |x|が最小となるのはl=1のときであるから x=オ9, y=カキクー76 ◆余りが1になったところ で,計算を逆にたどる。 0 ← ① を満たす 1組の解 01-x=-2,y=17 が得られる。 al- a I & meroun SHOR H.260 •②×5 とすると, ④ を満た す1組の解x=-10, |y=85 が得られる。

回答募集中 回答数: 0
1/3