学年

質問の種類

数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
数学 高校生

数学 整数の性質 下の写真の問題(1)についてです 解答に、「この不等式と89が素数であることより、」とあるのですが(赤マーカー部分)、 素数でなかったらどうなるんですか?解けないんですか?

_整数の性質 ~不定方程式の整数解~ (1) 到達問題の解説 11_1 n m (2) 整数a,bが2a+36=42 を満たすとき, ab の最大値は[ア ・かつmon を満たす自然数m,n を求めよ。 89 到達問題の (1) もアプローチ問題と同様に、 不定方程式の整数解を 求める問題だ。 (2) は積の最大値が問われているが、まず不定方程式 の解を求める必要がある。 「アプローチ問題」 で学んだ解法 STEP を 踏まえながら考えていこう。 →到達問題をもう一度見てみよう ← 1 方程式を整数の積の形に変形し、約数・倍数に注目 する (1) の方程式 1 1 1 m n 89 全く違って見えるが,積の形が目標であるから, まず分母を払って みよう。 両辺に89mn をかけて整理すると mn-89m-89n=0 となり、アプローチ問題 (1) と同タイプであることがわかる あと は積の形を目標に変形していけばよい。 (2) はアプローチ問題 (2) と同様に,具体的な整数解の1つを求めて 変形してもよいが, 42が3の倍数であるため, 36を移項し3でくくり 2a=3(14-b) G とする方が手間がかからない。 結果的にこれは、 具体的な整数解の1つ (a,b)=(0.14) を用いた変形となっている 【解答】 (1) m は,アプローチ問題 (1) の方程式とは 2 不等式により範囲を絞り, 考察対象を減らす (1) は, 方程式を積の形に直した後、mとnが自然数すなわち正の整 数であることと不等式 < n を利用すれば積の組合せを絞ることが できる。 1 1 = 12 89 り mn-89m-89n=0 m(n–89)–89n=0 m(n-89)-89(n-89+89)=0 (m-89)(n-89)=892 + である。 到達問題の解答 ('10 早稲田大・商) 具体的な整数解の1つとして (a,b)=(6.10) を用いると 2(a-6)=3(10-b) gum となる。 1 方程式を整数の積の形に変 形し、約数・倍数に注目する H 89 は素数なので、この式を満たす 8989の組合せのすべては、 (1, 892), (89, 89), (89², 1 (-1, -89), (-89, -89) (-89², -1) である。 「m, nはくを満たすぎ という条件から1個に絞ら ておこう。 難関大) 入試 (2) 入試 m,nはm<nを満たす自然数であるから, -89<m-89<n-89 この不等式と89 が素数であることより, (m-89, n-89)=(1, 89²) よって, m=90, n=8010 ...... 2a+36=42 変形して (答) 2a3(14-b) ..... ① 2と3は互いに素であるから αは3の倍数である。 よって, 整数kを用いて α=3k とおくことができ, このとき ①より, 2.3k=3(14-b) すなわち b=-2k+14 したがって, ab=3k(-2k+14) =-6k2+42k =-6(x-7)² + ¹47 んは整数であるから, abが最大になるのはk=3,4のとき であり、求める最大値は, ワンランク UP 演習 取り組んでみて、難しかったら、 講義に戻って考えよう。 -6.3°+42・3=72 ······ (答) 1 (1) pを素数とする。 x,yに関する方程式 + I = y P 2 不等式により範囲を絞り, 考察対象を減らす 2次関数の最大 最小は平方完成し て考える。 kは整数であり、2/7/27 とは! abt 72 60 1 方程式を整数の積の形に変 形し、約数・倍数に注目する ならないことに注意して、 前後の整! 数3,4について調べる。 1 は整数なので, ab は下の図のよう! にとびとびの値をとる。 O を満たす正の整数の組(x,y) をすべて求めよ。 ('09 お茶の水女子大理) (2) 7で割ると2余り, 11で割ると3余るような300 以下の自然数をすべて求めよ。 ('11 山形大工) Q 入試につながるヒント7で割ると2余る数と 11 で割ると余る数は、 整数を用いてどのように表されるだろうか。 UPの得点 /20点 別冊p.12の解答・解説で答え合わせをしよう! 29

解決済み 回答数: 1
数学 高校生

⑴でどこが間違っているか教えて欲しいです🙏

でないとき, 大きい方の数 この数 48で割 k+7) こに着目し が大きい -・・・・ を代 を探す. 85 目し 代入 より、 よって 求める整数解は 1272 x=-3k+1,y=4k-1 (kは整数) 次の不定方程式の整数解を求めよ. (1) 63x+29y=1 これに②を代入して, vg-1-11- (1) 方程式 63x+2y=1 ・・・・・・ ① の係数 63 と 29 につ いてユークリッドの互除法を用いる。 63=29×2+5 より 295×5+4 より 54×1+1 より, ④③ を代入して, 5-(29-5×5)×1=1 5x6-29×1=1 $I-+|+0 ( 63-29×2)×6-29×1=1 63-29×2=5 ...... ②8 |29-5×5=4... ③ =x 5-4×1=1 ......④ したがって, 63×6+29×(-13)=1......⑤ ①-⑤ より 63(x-6)+29(y+13)=0 (2) 73x-26y=3 63(6-x)=29(y+13 ) ......6 63と29 は互いに素であるから, 6-x は29の倍数と なる. 10 したがって, kを整数として 6x=29k, すなわち, |x=-29k+6 これを⑥に代入すると, 63×29k=29(y+13) 63k=y+13 より よって、求める整数解は, x=-29k+6,y=63k-13(kは整数) y=63k-13 ①⑤ より (2) 方程式 73x-26y=3 いてユークリッドの互除法を用いる. 73=26×2+21 より, 73-26×2=21 ......2 26=21×1+5 より 26-21×1=5......③ より 21=5×4+1 より, ④③ を代入して, SIZM 21-26-21×1)×4=1 21×5-26×4=1 これに② を代入して、つまり、 201 73×15-26×42=3 (18) ( 73-26×2)×5-26×4=1 したがって, 73×5-26×14=1 両辺に3を掛けると, 21-5×4=1 ......④ …① の係数 73 と 26 につ①の特殊解は見つけにくいの で,まず, ユークリッドの互 73(x-15)-26(y-42)=0 73(x-15)=26(y-42) 7326は互いに素であるから,x-15は26の倍数と る. 73k=y-42 より, y=73k+42 よって、求める整数解は, したがってんを整数として, x-15=26k, すなわち, x=26k+15 これを⑥に代入すると, 73×26k=26(y-42) |x=6, y=-13 が ① の解の 1つ 10 除法を用いて, ①の右辺を1 とおいた方程式 73x-26y=1の特殊解を求 める. |x=5, y = 14 が 73x-26y=1の解の1つ (6) 12x=15, y=42 が①の解の1 両辺に3を掛けて、 ①の特殊 解を求める. :656 of -in 150 11=M

解決済み 回答数: 1
数学 高校生

数学🅰️ 赤線部分がなぜそうなるのか分かりません

130 第7章 整数の性質 重要 例題 29 ユークリッドの互除法と1次不定方程式 (1) 不定方程式 161x+19y=1を満たす整数x,yの組の中で, xの絶対値が 小のものはx=[アイ, y=ウエである。(一 (2) 不定方程式 161x+19y=5 を満たす整数x,yの組の中で,xの絶対値が最 小のものはx=オ, y=カキク である。 POINT! 1次不定方程式の整数解の1組が容易に見つからない場合は、 ユークリッドの互除法を用いる。 ( 51 参考) (2)(1) の等式の両辺を5倍すると 161(5x)+19(5y)=5 よって,(1) で見つけた整数解の1組をそれぞれ5倍したものは 161x+19y=5の整数解の1組である。 解答 (1) 161x+19y=1 161=19・8+9 (19=9•2+1 この計算を逆にたどると 1=19-9・2 ①とする。 移項すると 9161-19.8 移項すると1=19-9・2 ...... (01-) (ĉ— 8-) (ar =19-(161-198) ・2 =161(-2)+19・17_ したがって 161・(-2)+19・17=1 ① ② から 161(x+2)+19(y-17)=0 161 19 は互いに素であるから、③より (2) x+2=19k, y-17-161k(kは整数) よって x=19k-2, y=-161k+17 |x|が最小となるのはん=0のときであるから x=アイー 2,y=ウェ17 (2) 161x+19y=5 ④とする。 ②から 161・(−2・5)+19・(17・5)=5 ④ ⑤ から 161(x+10)+19(y-85)=0 161 19 は互いに素であるから,⑥より (5) x+10=19l, y-85-161Z(Zは整数) よって x=19-10, y=-161+85 |x|が最小となるのはl=1のときであるから x=オ9, y=カキクー76 201 0 ←xの係数 161 とyの係数 19 にユークリッドの互除 法の計算を行う。 余りが1になったところ で, 計算を逆にたどる。 ← ① を満たす 1組の解 x=-2, y=17 が得られる。 ②×5 とすると④を満た す1組の解x=-10, y = 85 が得られる。 参考 x,yの係数の値が大きいときは,係数を小さくする方法が

未解決 回答数: 1
1/17