学年

質問の種類

数学 高校生

(1)の四角で囲ってる部分がよくわからないです。なんでこの計算になってるのかひとつずつ教えて欲しいです。お願いします🙇‍♀️

00 二項 1 の 次の等式を満たす整数x、yの組を1つ求めよ。 例題 126 1次不定方程式の整数解(1) 11x+19y=1 MART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 00000 (2) 11x+19y=5 p.463 基本事項 1,2 11と19は互いに素である。 まず, 等式 11x+19y=1のxの係数11 との係数 19 に 互除法の計算を行う。 その際, 11 <19 であるから, 11 を割る数, 19 を割られる数として 割り算の等式を作る。 =11,6=19 とおいて,別解 のように求めてもよい。 の係数との係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を5倍すると 11(5x)+19(5y)=5 よって、 (1) で求めた解を x=p, y = g とすると, x=5p, y=5g が (2)の解になる。 (1) 465 3=2・1+1 移すると 1=3-2.1 1=2- JJ 3=11-8・1 4章 15 319, 5, 次 めあうに いる 煮)。 (1) 19-11-1+8 移すると 8=19-11・1数解を 別解 (1) α=11,b=19 さ 取る 11=8・1+3 移すると 311-8.1とする。 8=3・2+2 移すると 28-3・2819-11・1=b-a 残る。 4個 よって 1-3-2-1-3-(8-3.2).1 方形 ちょ ごき すなわち 長さ 回数。 ユークリッドの互除法と1次不定方程式 11 33 =8・(-1)+3・3=8・(-1)+(11-8・1・3・ =11・3+8・(-4)=11・3+(19-11・1)・(-4) =11.7+19.(-4) 11・7+19・(-4)=1 ...... ① ゆえに、求める整数x、yの組の1つは x=7,y=-4 (2)①の両辺に5を掛けると すなわち 11•(7·5)+19•{(−4)•5}=5 よって、求める整数x、yの組の1つは 11・35+19・(-20)=5 x=35,y=-20 + =a-(b-a) 1=2a-b 2=8-3-2 =(b-a)-(2a-b)・2 + =-5a+36 (2)の整数解にはx=-3, y=2 という簡単なものも ある。このような解が最初に発見できるなら,それを 答としてもよい。 PRACTICE 126 次の等式を 13-2・1 =(2a-b)-(-5a+3b).1 =7a-4b すなわち 11・7+19・(-4)=1 よって求める整数x、yの 1つはE x=7, y=-4 慎重に 介 ート

解決済み 回答数: 1
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
数学 高校生

(1)の問題です。分からなくて解答見ました。 互除法を使って計算するところまでは理解したのですが、よってのあとからがわかりません。 解説お願いします🙇

本 例題 126 1次不定方程式の整数解 (1) 次の等式を満たす整数x、yの組を1つ求めよ。 (1) 11x+19y=1 465 ①①①① (2) 11x+19y=5 p. 463 基本事項 1.2 CHART & SOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 (1)1119は互いに素である。 まず, 等式 1x +19y=1のxの係数 11 とyの係数 19 に 互除法の計算を行う。 その際, 11-19 であるから, 11を割る数, 19 を割られる数として 割り算の等式を作る。 a=11, 6=19 とおいて,別のように求めてもよい。 (2)xの係数とyの係数が (1) の等式と等しいから, (1) を利用できる。 (1)の等式の両辺を 5 倍すると 11(5x) +19(5y)=5 よって、 (1) で求めた解を x=p, y=q とすると, x=5p, y=5g が (2)の解になる。 解 (1) 19=11.1 +8 移すると 8=19-11・1 11=8・1+3 移すると 3=11-8・1 8=3・2+2 移すると 2=8-3-2 3=2・1+1 移すると よって 1=3-2-1 1-3-2-1-3-(8-3.2) 1 =8⋅(-1)+3.3=8⋅(-1)+(11-8.1).3 =11・3+8・(-4)=11・3+ (19-11・1・(-4) =11・7+19・(-4) 11・7+19・(-4)=1 なわち ① えに, 求める整数x、yの組の1つは x=7, y=-4 2 ①の両辺に5を掛けると 11(7・5)+19・{(-4)・5}=5 すなわち 11・35+19・(-20)=5 解 (1) α=11,6=19 とする。 8=19-11・1=b-a 3=11-81 =a-(b-a)-1=2a-b 2=8-3-2 =(b-a)-(2a-b).2 =-5a+3b 1=3-2.1 =(2a-b)-(-5a+3b)・1 =7a-4b すなわち 11・7+19・(-4)=1 よって, 求める整数x, yの 組の1つは x=7, y=-4 よって, 求める整数x, yの組の1つは x=35, y=-20 ■注意 (2) の整数解にはx=-3, y=2 という簡単なものも ある。 このような解が最初に発見できるなら,それを 答としてもよい。 RACTICE 126° 次の等式を満たす整数x, yの組を1つ求めよ。 (1) 19. +26y=1 (2) 19x+26y=-2 慎重に

解決済み 回答数: 1
数学 中学生

209 (3)について、I行目は理解できるのですが、2行目以降がわかりません

★★☆☆ 組合せは何 場合 例題 209 整数解の個数 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (1)x+y+z= 7, x ≧ 0, y ≧0, z≧0 (2)x+y+z= 7, x ≧ 1, y≧1, z≧1 01★★ ★★★☆ 6 章 15 順列と組合せ → a, a, b, c ◆a, a, a,c → b, b, b, b す の =2 (個) 必要 思考プロセス (3)x+y+z≦ 7, x ≧ 0, y ≧0, z≧0 既知の問題に帰着 (1)7を3つの整数x,y,zに割り振る。 ⇒ 7個のものを3種類に分ける。 ⇒7個のを2個の(区切り)で分ける。 (例題 208 に帰着) (1)・・ ...x, y, z はすべて 1以上 ⇒先にx, y, zに1つずつ0を割り振ってしまい, 残り4つの ○ の x,y,zへの割り振りを考えればよい。 対応 (3) 不等式の場合には、001000121わない 右のように対応させる。 001000010 y 対応 (x,y,z) = (2,4,1) ↓↓ (x, y, zに xyz割り振る (x,y,z)=(2,3,1) Action» 係数が等しい不定方程式の整数解の個数は、重複組合せで考えよ A (1) 求める組の総数は7個の○と2個のの順列の総数 に等しいから 9! 7!2! =36 (組) を合わせた ■場所から を選ぶと 15(通り) (2)求める組の総数は, 7個の○と2個のに対して, まず,3個の○を1個ずつx, y, zの値に割り振ると考 えると,残り4個の○と2個のの順列の総数に等しい =15 (組) から 6! 4!2! nHr (別解 合わ 50 含 つの箱だけに入 求める組の総数は7個の○に対して,間の6か所か ら2か所選んでを入れる入れ方の総数に等しいから 62 = 15 (組) (3)求める組の総数は7個の○と3個のを1列に並べ 1つ目のより左側の○の個数をxの値, 1つ目のと2つ目のの間の○の個数をyの値, 2つ目のと3つ目のの間の○の個数を2の値 とすると考えて 10! = =120 (組) 7!3! 209 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (別解 x, y, zの3種類のもの から重複を許して7個と る組合せの数であるから 3H7=3+7-1C7=9C7=9C2 36(組) ○|○○○」のとき x=1+1=2 y=3+ 1 = 4 z=0+1=1 2個ので区切られた3 つの部分には少なくとも 1個の○が含まれる。 7-(x+y+z)=u とおくと x+y+z+u=7 x≥0, y ≥0, z≥0, u≥0 を満たす整数の組の個数 を求める問題となる。 は何 208 (1)x+y+z=8,x≧0, y≧0, z≧ 0 (2)x+y+z=9,x≧1, y ≧1, z≧1 (3)x+y+z=10,x≧0y0z≧0 381 p.391 問題209

未解決 回答数: 1
1/18