学年

質問の種類

数学 高校生

ロピタルの定理をわかりやすく説明してください

スマー の例 入の ※解 青 の2 ※解 い 日入選程学 8 160 |練習 ④92 解答 演習 例題 92 ロピタルの定理を利用した極限 (1) lim- x→0 ロピタルの定理を用いて,次の極限値を求めよ。 x-log(1+x) x² (1) は 指針 ロピタルの定理 (以下)は、 まず前提条件 lim f(x) が不定形 (10) のとき や g(x) また 0 また f' (x) lim x-a g'(x) (2) は また ( 2 ) 分母・分子を微分した式の極限 lim- x-00 (1) f(x)=x-log(1+x), g(x)=x2とすると 1 f'(x)=1- 1+x したがって f'(x) lim x-0 g'(x) とすると (1) lim x→0 したがって の不定形で (3)の0×(−∞)は変形するとの不定形になる。 (x²)' もまた な場合は,更に分母・分子を微分した式の極限を考える。 (e²x), x-log(1+x) x² (2) f(x)=x^2,g(x) = ex とすると lim x-x0 g"(x) lim x→0 XC -=lim x→0 lim X→∞ f'(x) lim x++0 g(x) (2) lim -=1 (有限確定値) ならば lim -=lim X→∞ x² e²x x→+0 x² x+∞0 0²x (3) lim xlog x x→+0 f'(x) = - =1/1₁ x f'(x)=2x,g'(x)=2e2x, f"(x)=2, g" (x)=4e²x f" (x) 500 2 4e2x =0 EXCOVE x 1+x=lim 2 (1+x)=1/ 2x x→02(1+x) 2 1 x 1+x '(x)=2x =0 x -=lim x→+0 1 x² したがって limxlogx = 0 を確かめてから適用する。 (3) xlogx= logx であるから, f(x)=10gx,g(x)=1 1 g'(x)=- 1 (2) lim 20 1 x² エール g(x) x→+0 f(x)=1 lim(-x)=0 ロピタルの定理を用いて,次の極限値を求めよ。 ex-e-x x-sinx x x→0 x2 8 8 18 の不定形になる。このよう 00000 p.159 参考事項 |lim{x-log(1+x)}=0, x→0 limx2=0 x→0 x→0であるから, x=0の近くで考える。 X18 <lim limx2=8, lime²x=8, lim2x=∞, lim2ex = ∞ lim f" (x ) g" (x) f' (x) g'(x) X-∞ lim =8 x→+0 x → =1=> =lim x-a =l <lim logx= -8, x→+0 (3) lilog 1 x+1 f(x) g(x) ②86 f(x)= EXER ③87 平均値 (1) 注意 ロピタルの定理は, 利用価値が高い定理である 高校数学の範囲外の内 容なので、 試験の答案とし てではなく、検算として使 う方がよい。 (2) (1) (2) ④88 関数 (1) (2) (3) ④89 (1 (2 HINT

解決済み 回答数: 1